Abstract
We introduce 3DEgo to address a novel problem of directly synthesizing photorealistic 3D scenes from monocular videos guided by textual prompts. Conventional methods construct a text-conditioned 3D scene through a three-stage process, involving pose estimation using Structure-from-Motion (SfM) libraries like COLMAP, initializing the 3D model with unedited images, and iteratively updating the dataset with edited images to achieve a 3D scene with text fidelity. Our framework streamlines the conventional multi-stage 3D editing process into a single-stage workflow by overcoming the reliance on COLMAP and eliminating the cost of model initialization. We apply a diffusion model to edit video frames prior to 3D scene creation by incorporating our designed noise blender module for enhancing multi-view editing consistency, a step that does not require additional training or fine-tuning of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to create 3D scenes from the multi-view consistent edited frames, capitalizing on the inherent temporal continuity and explicit point cloud data. 3DEgo demonstrates remarkable editing precision, speed, and adaptability across a variety of video sources, as validated by extensive evaluations on six datasets, including our own prepared GS25 dataset. Project Page: https://3dego.github.io/.
U. Khalid and H. Iqbal–Equal Contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, C., et al.: SINE: semantic-driven image-based nerf editing with prior-guided editing field. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20919–20929 (2023)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)
Bian, W., Wang, Z., Li, K., Bian, J.W., Prisacariu, V.A.: Nope-NeRF: optimising neural radiance field with no pose prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4160–4169 (2023)
Brooks, T., Holynski, A., Efros, A.A.: InstructPix2Pix: learning to follow image editing instructions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18392–18402 (2023)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Chiang, P.Z., Tsai, M.S., Tseng, H.Y., Lai, W.S., Chiu, W.C.: Stylizing 3D scene via implicit representation and hypernetwork. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1475–1484 (2022)
Dong, J., Wang, Y.X.: ViCA-NeRF: view-consistency-aware 3D editing of neural radiance fields. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
Fu, Y., Liu, S., Kulkarni, A., Kautz, J., Efros, A.A., Wang, X.: Colmap-free 3D gaussian splatting (2023). https://arxiv.org/abs/2312.07504
Gal, R., Patashnik, O., Maron, H., Bermano, A.H., Chechik, G., Cohen-Or, D.: StyleGAN-NADA: CLIP-guided domain adaptation of image generators. ACM Trans. Graph. 41(4), 1–13 (2022). https://doi.org/10.1145/3528223.3530164
Gao, W., Aigerman, N., Groueix, T., Kim, V.G., Hanocka, R.: TextDeformer: geometry manipulation using text guidance. arXiv preprint arXiv:2304.13348 (2023)
Haque, A., Tancik, M., Efros, A.A., Holynski, A., Kanazawa, A.: Instruct-NeRF2NeRF: editing 3D scenes with instructions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19740–19750 (2023)
Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y., Cohen-Or, D.: Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626 (2022)
Hong, F., Zhang, M., Pan, L., Cai, Z., Yang, L., Liu, Z.: AvatarCLIP: zero-shot text-driven generation and animation of 3D avatars. ACM Trans. Graph. (TOG) 41(4), 1–19 (2022)
Huang, Y.H., He, Y., Yuan, Y.J., Lai, Y.K., Gao, L.: StylizedNeRF: consistent 3D scene stylization as stylized nerf via 2D-3D mutual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18342–18352 (2022)
Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: ICCV (2021)
Karim, N., Khalid, U., Iqbal, H., Hua, J., Chen, C.: Free-editor: zero-shot text-driven 3D scene editing. arXiv preprint arXiv:2312.13663 (2023)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1–14 (2023)
Khalid, U., Iqbal, H., Karim, N., Hua, J., Chen, C.: LatentEditor: text driven local editing of 3D scenes. arXiv preprint arXiv:2312.09313 (2023)
Kim, S., Lee, K., Choi, J.S., Jeong, J., Sohn, K., Shin, J.: Collaborative score distillation for consistent visual editing. In: Thirty-seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=0tEjORCGFD
Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)
Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and Temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (2017)
Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via feature field distillation. arXiv preprint arXiv:2205.15585 (2022)
Li, Y., Lin, Z.H., Forsyth, D., Huang, J.B., Wang, S.: ClimateNeRF: physically-based neural rendering for extreme climate synthesis. arXiv e-prints pp. arXiv–2211 (2022)
Li, Y., et al.: FocalDreamer: text-driven 3D editing via focal-fusion assembly. arXiv preprint arXiv:2308.10608 (2023)
Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: ICCV (2021)
Liu, H.K., Shen, I., Chen, B.Y., et al.: NeRF-in: free-form nerf inpainting with RGB-D priors. arXiv preprint arXiv:2206.04901 (2022)
Long, X., et al.: Wonder3D: single image to 3D using cross-domain diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9970–9980 (2024)
Michel, O., Bar-On, R., Liu, R., et al.: Text2Mesh: text-driven neural stylization for meshes. In: CVPR 2022, pp. 13492–13502 (2022)
Nguyen-Phuoc, T., Liu, F., Xiao, L.: SNERF: stylized neural implicit representations for 3D scenes. arXiv preprint arXiv:2207.02363 (2022)
Nichol, A., et al.: GLIDE: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)
Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: ICCV 2021, pp. 5762–5772 (2021)
Park, H.S., Jun, C.H.: A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Rajič, F., Ke, L., Tai, Y.W., Tang, C.K., Danelljan, M., Yu, F.: Segment anything meets point tracking. arXiv preprint arXiv:2307.01197 (2023)
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with CLIP latents. arXiv preprint arXiv:2204.06125 (2022)
Reizenstein, J., Shapovalov, R., Henzler, P., Sbordone, L., Labatut, P., Novotny, D.: Common objects in 3D: large-scale learning and evaluation of real-life 3D category reconstruction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10901–10911 (2021)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR 2022, pp. 10684–10695 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Saharia, C., Chan, W., Saxena, S.E.A.: Photorealistic text-to-image diffusion models with deep language understanding. NeurIPS 2022 35, 36479–36494 (2022)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Suvorov, R., et al.: Resolution-robust large mask inpainting with fourier convolutions. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2149–2159 (2022)
Tancik, M., et al.: Nerfstudio: a modular framework for neural radiance field development. In: ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–12 (2023)
Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3D distillation of self-supervised 2D image representations. In: 2022 International Conference on 3D Vision (3DV), pp. 443–453. IEEE (2022)
Wang, C., Chai, M., He, M., et al.: CLIP-NeRF: text-and-image driven manipulation of neural radiance fields. In: CVPR 2022, pp. 3835–3844 (2022)
Wang, C., Jiang, R., Chai, M., He, M., Chen, D., Liao, J.: NeRF-Art: text-driven neural radiance fields stylization. IEEE Trans. Vis. Comput. Graph. (2023)
Weng, H., et al.: Consistent123: improve consistency for one image to 3D object synthesis. arXiv preprint arXiv:2310.08092 (2023)
Wu, Q., Tan, J., Xu, K.: PaletteNeRF: palette-based color editing for NeRFs. arXiv preprint arXiv:2212.12871 (2022)
Xu, T., Harada, T.: Deforming radiance fields with cages. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII, pp. 159–175. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19827-4_10
Yang, B., et al.: NeuMesh: learning disentangled neural mesh-based implicit field for geometry and texture editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVI, pp. 597–614. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19787-1_34
Ye, M., Danelljan, M., Yu, F., Ke, L.: Gaussian Grouping: segment and edit anything in 3D scenes. arXiv preprint arXiv:2312.00732 (2023)
Zhang, K., et al.: ARF: artistic radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXI, pp. 717–733. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-19821-2_41
Zhuang, J., Wang, C., Lin, L., Liu, L., Li, G.: DreamEditor: text-driven 3D scene editing with neural fields. In: SIGGRAPH Asia 2023 Conference Papers, pp. 1–10 (2023)
Acknowledgement
This work was partially supported by the NSF under Grant Numbers OAC-1910469 and OAC-2311245.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Khalid, U., Iqbal, H., Farooq, A., Hua, J., Chen, C. (2025). 3DEgo: 3D Editing on the Go!. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15088. Springer, Cham. https://doi.org/10.1007/978-3-031-73404-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-73404-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73403-8
Online ISBN: 978-3-031-73404-5
eBook Packages: Computer ScienceComputer Science (R0)