Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Learning Techniques for Oral Cancer Detection: Enhancing Clinical Diagnosis by ResNet and DenseNet Performance

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2024)

Abstract

This study aims to enhance the accuracy and efficiency of oral cancer diagnosis through the application of deep learning techniques in medical image analysis. The research employs convolutional neural networks (CNNs), specifically ResNet and DenseNet architectures, for the classification of oral cancer images into malignant and benign categories. Data preprocessing involves resizing, normalization, and augmentation to optimize model performance. Evaluation metrics including accuracy, loss, specificity, and sensitivity demonstrate varying performance across different CNN models. DenseNet architectures consistently outperform ResNet and conventional CNNs in terms of accuracy and sensitivity metrics. The results showed that DenseNet consistently outperformed ResNet, achieving higher accuracy and sensitivity, which are crucial for early cancer detection. The findings underscore the transformative potential of deep learning in augmenting clinical decision-making for oral cancer detection. Integration of these advanced technologies into healthcare workflows could significantly improve early detection rates and treatment outcomes, paving the way for personalized medicine approaches in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajagbe, S.A., Adegun, A.A., Mudali, P., Adigun, M.O.: Performance of machine learning models for pandemic detection using COVID-19 dataset. In: 2023 IEEE AFRICON, pp. 1–6. IEEE (2023)

    Google Scholar 

  2. Ajagbe, S.A., Adigun, M.O.: Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review. Multimedia Tools Appl. 83(2), 5893–5927 (2024)

    Article  Google Scholar 

  3. Brockmoeller, S., et al.: Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer. J. Pathol. 256(3), 269–281 (2022)

    Article  Google Scholar 

  4. Chakraborty, D., Natarajan, C., Mukherjee, A.: Advances in oral cancer detection. Adv. Clin. Chem. 91, 181–200 (2019)

    Article  Google Scholar 

  5. García-Pola, M., Pons-Fuster, E., Suárez-Fernández, C., Seoane-Romero, J., Romero-Méndez, A., López-Jornet, P.: Role of artificial intelligence in the early diagnosis of oral cancer. a scoping review. Cancers 13(18), 4600 (2021)

    Google Scholar 

  6. Hassan, M.R., et al.: Prostate cancer classification from ultrasound and MRI images using deep learning based explainable artificial intelligence. Futur. Gener. Comput. Syst. 127, 462–472 (2022)

    Article  Google Scholar 

  7. Hegde, S., Ajila, V., Zhu, W., Zeng, C.: Artificial intelligence in early diagnosis and prevention of oral cancer. Asia Pac. J. Oncol. Nurs. 9(12), 100133 (2022)

    Article  Google Scholar 

  8. Ho, C., et al.: A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Sci. Rep. 12(1), 2222 (2022)

    Article  Google Scholar 

  9. Huang, Q., Ding, H., Razmjooy, N.: Optimal deep learning neural network using ISSA for diagnosing the oral cancer. Biomed. Signal Process. Control 84, 104749 (2023)

    Article  Google Scholar 

  10. Ilhan, B., Lin, K., Guneri, P., Wilder-Smith, P.: Improving oral cancer outcomes with imaging and artificial intelligence. J. Dent. Res. 99(3), 241–248 (2020)

    Article  Google Scholar 

  11. Ilhan, B., Guneri, P., Wilder-Smith, P.: The contribution of artificial intelligence to reducing the diagnostic delay in oral cancer. Oral Oncol. 116, 105254 (2021)

    Article  Google Scholar 

  12. Jeyaraj, P.R., Samuel Nadar, E.R.: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm. J. Cancer Res. Clin. Oncol. 145, 829–837 (2019)

    Article  Google Scholar 

  13. López-Cortés, X.A., Matamala, F., Venegas, B., Rivera, C.: Machine-learning applications in oral cancer: a systematic review. Appl. Sci. 12(11), 5715 (2022)

    Article  Google Scholar 

  14. Mira, E.S., et al.: Early diagnosis of oral cancer using image processing and artificial intelligence. Fusion: Pract. Appl. 14(1), 293–308 (2024)

    Google Scholar 

  15. Palaskar, R., Vyas, R., Khedekar, V., Palaskar, S., Sahu, P.: Transfer learning for oral cancer detection using microscopic images. arXiv preprint arXiv:2011.11610 (2020)

  16. Panigrahi, S., Swarnkar, T.: Machine learning techniques used for the histopathological image analysis of oral cancer-a review. The Open Bioinform. J. 13(1) (2020)

    Google Scholar 

  17. Rai, H.M.: Cancer detection and segmentation using machine learning and deep learning techniques: a review. Multimedia Tools Appl. 83(9), 27001–27035 (2024)

    Article  Google Scholar 

  18. Rivera, C.: Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 8(9), 11884 (2015)

    Google Scholar 

  19. Seoane, J., Varela-Centelles, P., Tomas, I., Seoane-Romero, J., Diz, P., Takkouche, B.: Continuing education in oral cancer prevention for dentists in Spain. J. Dent. Educ. 76(9), 1234–1240 (2012)

    Article  Google Scholar 

  20. Sujir, N., Ahmed, J., Pai, K., Denny, C., Shenoy, N.: Challenges in early diagnosis of oral cancer: cases series. Acta Stomatol. Croat. 53(2), 174 (2019)

    Article  Google Scholar 

  21. Sulochana, C., Sumathi, M.: A systematic review on oral cancer diagnosis and prognosis using machine learning techniques. J. Algebraic Stat. 13(3), 3542–3550 (2022)

    Google Scholar 

  22. Sultan, A.S., Elgharib, M.A., Tavares, T., Jessri, M., Basile, J.R.: The use of artificial intelligence, machine learning and deep learning in oncologic histopathology. J. Oral Pathol. Med. 49(9), 849–856 (2020)

    Article  Google Scholar 

  23. Magesh, T.R., Vionth Kumar, V., Guluwadi, S.: Enhancing brain tumor detection in MRI images through explainable AI using grad-cam with resnet 50. BMC Medical Imaging 24(1), 107 (2024)

    Google Scholar 

  24. Tsuneki, M., Abe, M., Kanavati, F.: A deep learning model for prostate adenocarcinoma classification in needle biopsy whole-slide images using transfer learning. Diagnostics 12(3), 768 (2022)

    Article  Google Scholar 

  25. sagari vijay: oral cancer data dataset. https://universe.roboflow.com/sagari-vijay/oral-cancer-data (2021). https://universe.roboflow.com/sagari-vijay/oral-cancer-data, visited 08 Jul 2024

  26. Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S., Jantana, P., Vicharueang, S.: Ai-based analysis of oral lesions using novel deep convolutional neural networks for early detection of oral cancer. PLoS ONE 17(8), e0273508 (2022)

    Article  Google Scholar 

  27. Warin, K., Suebnukarn, S.: Deep learning in oral cancer-a systematic review. BMC Oral Health 24(1), 212 (2024)

    Article  Google Scholar 

  28. Warnakulasuriya, S., Kerr, A.: Oral cancer screening: past, present, and future. J. Dent. Res. 100(12), 1313–1320 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This is study was foundedb by the ANID FONDAP 152220002 (CECAN). We would also like to extend our gratitude to ANID - MILENIO - NCS2021_013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Ormeño-Arriagada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ormeño-Arriagada, P., Navarro, E., Taramasco, C., Gatica, G., Vásconez, J.P. (2025). Deep Learning Techniques for Oral Cancer Detection: Enhancing Clinical Diagnosis by ResNet and DenseNet Performance. In: Florez, H., Astudillo, H. (eds) Applied Informatics. ICAI 2024. Communications in Computer and Information Science, vol 2236. Springer, Cham. https://doi.org/10.1007/978-3-031-75144-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75144-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75143-1

  • Online ISBN: 978-3-031-75144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics