Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modular Criticality Analysis for Dynamic Fault Trees

  • Chapter
  • First Online:
Principles of Verification: Cycling the Probabilistic Landscape

Abstract

Fault trees are commonly used to model fault occurrence and propagation in safety-critical systems. A common analysis question is “how critical is a component failure for the overall system reliability?” These insights allow to guide and tailor system improvements. Dynamic fault trees, a common extension of classical fault trees, enable more realistic modelling. However, their analysis via model-checking techniques, can suffer from state-space explosion. In this work, we revisit a modular analysis of criticality values in dynamic fault trees. The analysis exploits modules—independent subtrees—in the fault tree, and analyses them individually. Our experiments show that modular analysis can successfully mitigate state-space explosion.

This research has been partially funded by NWO under the grant PrimaVera number NWA.1160.18.238, the Marie Sklodowska-Curie grant agreement No 101008233, and by the ERC Consolidator grant CAESAR number 864075.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statement

An artifact with the fault trees and results is available online (doi.org/10.5281/zenodo.13338381).

Notes

  1. 1.

    The failure rates are given for illustrative purposes and might differ in reality.

  2. 2.

    https://www.safest.dgbtek.com/.

References

  1. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2_27

    Chapter  Google Scholar 

  2. Aslansefat, K., Kabir, S., Gheraibia, Y., Papadopoulos, Y.: Dynamic fault tree analysis: state-of-the-art in modeling, analysis, and tools. In: Reliability Management and Engineering, 1 edn, pp. 73–112. CRC Press (2020)

    Google Scholar 

  3. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180

    Article  Google Scholar 

  4. Basgöze, D., Volk, M., Katoen, J.P., Khan, S., Stoelinga, M.: BDDs strike back - efficient analysis of static and dynamic fault trees. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 713–732. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_38

    Chapter  Google Scholar 

  5. Birnbaum, Z.W.: On the importance of different components in a multicomponent system. Technical report, TR-54, Laboratory of Statistical Research, University of Washington (1968)

    Google Scholar 

  6. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur. Comput. 7(2), 128–143 (2010). https://doi.org/10.1109/TDSC.2009.45

    Article  Google Scholar 

  7. Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree rare event simulator. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 233–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9_17

    Chapter  Google Scholar 

  8. Cox, D.R.: A use of complex probabilities in the theory of stochastic processes. Math. Proc. Cambridge Philos. Soc. 51(2), 313–319 (1955). https://doi.org/10.1017/S0305004100030231

    Article  MathSciNet  Google Scholar 

  9. Dang, T.K.N., Lopuhaä-Zwakenberg, M., Stoelinga, M.: Fuzzy quantitative attack tree analysis. In: Beyer, D., Cavalcanti, A. (eds.) FASE 2024. LNCS, vol. 14573, pp. 210–231. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57259-3_10

    Chapter  Google Scholar 

  10. Dugan, J.B., Assaf, T.S.: Dynamic fault tree analysis of a reconfigurable software system. In: International System Safety Conference, pp. 480–487 (2001)

    Google Scholar 

  11. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: RAMS, pp. 286–293 (1990). https://doi.org/10.1109/ARMS.1990.67971

  12. Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE Trans. Reliab. 45(3), 422–425 (1996). https://doi.org/10.1109/24.537011

    Article  Google Scholar 

  13. Dutuit, Y., Rauzy, A.: Efficient algorithms to assess component and gate importance in fault tree analysis. Reliab. Eng. Syst. Saf. 72(2), 213–222 (2001). https://doi.org/10.1016/S0951-8320(01)00004-7

    Article  Google Scholar 

  14. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41

  15. Federal Aviation Administration: System safety handbook (2000)

    Google Scholar 

  16. Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 37–50 (2019). https://doi.org/10.1016/J.RESS.2019.02.005

    Article  Google Scholar 

  17. Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic fault trees. In: RAMS, pp. 57–63 (1997). https://doi.org/10.1109/RAMS.1997.571665

  18. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/S10009-021-00633-Z

    Article  Google Scholar 

  19. ISO: ISO 26262: Road vehicles – Functional safety. Standard, International Organization for Standardization, Geneva, Switzerland (2011)

    Google Scholar 

  20. Jimenez-Roa, L.A., Volk, M., Stoelinga, M.: Data-driven inference of fault tree models exploiting symmetry and modularization. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds.) SAFECOMP 2022. LNCS, vol. 13414, pp. 46–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14835-4_4

    Chapter  Google Scholar 

  21. Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a diet: automated reduction by graph rewriting. Formal Aspects Comput. 29(4), 651–703 (2017). https://doi.org/10.1007/S00165-016-0412-0

    Article  MathSciNet  Google Scholar 

  22. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: DSN, pp. 299–310. IEEE Computer Society (2016). https://doi.org/10.1109/DSN.2016.35

  23. Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_14

    Chapter  Google Scholar 

  24. Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., Konur, S.: A hybrid modular approach for dynamic fault tree analysis. IEEE Access 8, 97175–97188 (2020). https://doi.org/10.1109/ACCESS.2020.2996643

    Article  Google Scholar 

  25. Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016). https://doi.org/10.1145/2933575.2934574

  26. Lopuhaä-Zwakenberg, M., Budde, C.E., Stoelinga, M.: Efficient and generic algorithms for quantitative attack tree analysis. IEEE Trans. Dependable Secur. Comput. 20(5), 4169–4187 (2023). https://doi.org/10.1109/TDSC.2022.3215752

    Article  Google Scholar 

  27. Ou, Y., Dugan, J.: Sensitivity analysis of modular dynamic fault trees. In: IPDS, pp. 35–43. IEEE (2000). https://doi.org/10.1109/IPDS.2000.839462

  28. Ou, Y., Dugan, J.B.: Approximate sensitivity analysis for acyclic Markov reliability models. IEEE Trans. Reliab. 52(2), 220–230 (2003). https://doi.org/10.1109/TR.2003.809657

    Article  Google Scholar 

  29. Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3), 203–211 (1993)

    Article  Google Scholar 

  30. Reay, K.A., Andrews, J.D.: A fault tree analysis strategy using binary decision diagrams. Reliab. Eng. Syst. Saf. 78(1), 45–56 (2002). https://doi.org/10.1016/S0951-8320(02)00107-2

    Article  Google Scholar 

  31. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/10.1016/J.COSREV.2015.03.001

    Article  MathSciNet  Google Scholar 

  32. Sinnamon, R.M., Andrews, J.D.: Fault tree analysis and binary decision diagrams. In: Annual Reliability and Maintainability Symposium, pp. 215–222. IEEE (1996)

    Google Scholar 

  33. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications (2002)

    Google Scholar 

  34. Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: FTCS, pp. 232–235. IEEE Computer Society (1999). https://doi.org/10.1109/FTCS.1999.781056

  35. Vesely, W., Davis, T., Denning, R., Saltos, N.: Measures of risk importance and their applications. Technical report, Battelle Columbus Labs (1983)

    Google Scholar 

  36. Volk, M.: Dynamic fault trees: semantics, analysis and applications. Ph.D. thesis, RWTH Aachen University, Aachen (2022). https://doi.org/10.18154/RWTH-2023-04092

  37. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018). https://doi.org/10.1109/TII.2017.2710316

    Article  Google Scholar 

  38. Volk, M., Sher, F., Katoen, J.P., Stoelinga, M.: SAFEST: fault tree analysis via probabilistic model checking. In: RAMS, pp. 1–7. IEEE (2024). https://doi.org/10.1109/RAMS51492.2024.10457719

  39. Weik, N., Volk, M., Katoen, J.P., Nießen, N.: DFT modeling approach for operational risk assessment of railway infrastructure. Int. J. Softw. Tools Technol. Transf. 24(3), 331–350 (2022). https://doi.org/10.1007/S10009-022-00652-4

    Article  Google Scholar 

  40. Xie, K., Hu, B., Singh, C.: Reliability evaluation of double 12-pulse ultra HVDC transmission systems. IEEE Trans. Power Deliv. 31(1), 210–218 (2016). https://doi.org/10.1109/TPWRD.2015.2489658

    Article  Google Scholar 

  41. Yevkin, O.: An improved modular approach for dynamic fault tree analysis. In: RAMS, pp. 1–5. IEEE (2011). https://doi.org/10.1109/RAMS.2011.5754437

Download references

Acknowledgements

We thank Joost-Pieter for his inspiration and guidance over many years. This Festschrift paper builds upon a long line of fruitful discussions and collaborations with him on (dynamic) fault tree analysis, propelled by his motivation to bring theoretical results into tool support and practical application. Last but not least, we like to thank him for sharing his love of sports, music, and good coffee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sher, F., Stoelinga, M., Volk, M. (2025). Modular Criticality Analysis for Dynamic Fault Trees. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15262. Springer, Cham. https://doi.org/10.1007/978-3-031-75778-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-75778-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-75777-8

  • Online ISBN: 978-3-031-75778-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics