Abstract
Fault trees are commonly used to model fault occurrence and propagation in safety-critical systems. A common analysis question is “how critical is a component failure for the overall system reliability?” These insights allow to guide and tailor system improvements. Dynamic fault trees, a common extension of classical fault trees, enable more realistic modelling. However, their analysis via model-checking techniques, can suffer from state-space explosion. In this work, we revisit a modular analysis of criticality values in dynamic fault trees. The analysis exploits modules—independent subtrees—in the fault tree, and analyses them individually. Our experiments show that modular analysis can successfully mitigate state-space explosion.
This research has been partially funded by NWO under the grant PrimaVera number NWA.1160.18.238, the Marie Sklodowska-Curie grant agreement No 101008233, and by the ERC Consolidator grant CAESAR number 864075.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability Statement
An artifact with the fault trees and results is available online (doi.org/10.5281/zenodo.13338381).
Notes
- 1.
The failure rates are given for illustrative purposes and might differ in reality.
- 2.
References
Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2_27
Aslansefat, K., Kabir, S., Gheraibia, Y., Papadopoulos, Y.: Dynamic fault tree analysis: state-of-the-art in modeling, analysis, and tools. In: Reliability Management and Engineering, 1 edn, pp. 73–112. CRC Press (2020)
Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Software Eng. 29(6), 524–541 (2003). https://doi.org/10.1109/TSE.2003.1205180
Basgöze, D., Volk, M., Katoen, J.P., Khan, S., Stoelinga, M.: BDDs strike back - efficient analysis of static and dynamic fault trees. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM 2022. LNCS, vol. 13260, pp. 713–732. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_38
Birnbaum, Z.W.: On the importance of different components in a multicomponent system. Technical report, TR-54, Laboratory of Statistical Research, University of Washington (1968)
Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and extensible framework for dynamic fault tree analysis. IEEE Trans. Dependable Secur. Comput. 7(2), 128–143 (2010). https://doi.org/10.1109/TDSC.2009.45
Budde, C.E., Ruijters, E., Stoelinga, M.: The dynamic fault tree rare event simulator. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 233–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9_17
Cox, D.R.: A use of complex probabilities in the theory of stochastic processes. Math. Proc. Cambridge Philos. Soc. 51(2), 313–319 (1955). https://doi.org/10.1017/S0305004100030231
Dang, T.K.N., Lopuhaä-Zwakenberg, M., Stoelinga, M.: Fuzzy quantitative attack tree analysis. In: Beyer, D., Cavalcanti, A. (eds.) FASE 2024. LNCS, vol. 14573, pp. 210–231. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-57259-3_10
Dugan, J.B., Assaf, T.S.: Dynamic fault tree analysis of a reconfigurable software system. In: International System Safety Conference, pp. 480–487 (2001)
Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In: RAMS, pp. 286–293 (1990). https://doi.org/10.1109/ARMS.1990.67971
Dutuit, Y., Rauzy, A.: A linear-time algorithm to find modules of fault trees. IEEE Trans. Reliab. 45(3), 422–425 (1996). https://doi.org/10.1109/24.537011
Dutuit, Y., Rauzy, A.: Efficient algorithms to assess component and gate importance in fault tree analysis. Reliab. Eng. Syst. Saf. 72(2), 213–222 (2001). https://doi.org/10.1016/S0951-8320(01)00004-7
Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous time. In: LICS, pp. 342–351. IEEE Computer Society (2010). https://doi.org/10.1109/LICS.2010.41
Federal Aviation Administration: System safety handbook (2000)
Ghadhab, M., Junges, S., Katoen, J.P., Kuntz, M., Volk, M.: Safety analysis for vehicle guidance systems with dynamic fault trees. Reliab. Eng. Syst. Saf. 186, 37–50 (2019). https://doi.org/10.1016/J.RESS.2019.02.005
Gulati, R., Dugan, J.B.: A modular approach for analyzing static and dynamic fault trees. In: RAMS, pp. 57–63 (1997). https://doi.org/10.1109/RAMS.1997.571665
Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker Storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022). https://doi.org/10.1007/S10009-021-00633-Z
ISO: ISO 26262: Road vehicles – Functional safety. Standard, International Organization for Standardization, Geneva, Switzerland (2011)
Jimenez-Roa, L.A., Volk, M., Stoelinga, M.: Data-driven inference of fault tree models exploiting symmetry and modularization. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds.) SAFECOMP 2022. LNCS, vol. 13414, pp. 46–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14835-4_4
Junges, S., Guck, D., Katoen, J.P., Rensink, A., Stoelinga, M.: Fault trees on a diet: automated reduction by graph rewriting. Formal Aspects Comput. 29(4), 651–703 (2017). https://doi.org/10.1007/S00165-016-0412-0
Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees. In: DSN, pp. 299–310. IEEE Computer Society (2016). https://doi.org/10.1109/DSN.2016.35
Junges, S., Katoen, J.-P., Stoelinga, M., Volk, M.: One net fits all. In: Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 272–293. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4_14
Kabir, S., Aslansefat, K., Sorokos, I., Papadopoulos, Y., Konur, S.: A hybrid modular approach for dynamic fault tree analysis. IEEE Access 8, 97175–97188 (2020). https://doi.org/10.1109/ACCESS.2020.2996643
Katoen, J.: The probabilistic model checking landscape. In: LICS, pp. 31–45. ACM (2016). https://doi.org/10.1145/2933575.2934574
Lopuhaä-Zwakenberg, M., Budde, C.E., Stoelinga, M.: Efficient and generic algorithms for quantitative attack tree analysis. IEEE Trans. Dependable Secur. Comput. 20(5), 4169–4187 (2023). https://doi.org/10.1109/TDSC.2022.3215752
Ou, Y., Dugan, J.: Sensitivity analysis of modular dynamic fault trees. In: IPDS, pp. 35–43. IEEE (2000). https://doi.org/10.1109/IPDS.2000.839462
Ou, Y., Dugan, J.B.: Approximate sensitivity analysis for acyclic Markov reliability models. IEEE Trans. Reliab. 52(2), 220–230 (2003). https://doi.org/10.1109/TR.2003.809657
Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3), 203–211 (1993)
Reay, K.A., Andrews, J.D.: A fault tree analysis strategy using binary decision diagrams. Reliab. Eng. Syst. Saf. 78(1), 45–56 (2002). https://doi.org/10.1016/S0951-8320(02)00107-2
Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/10.1016/J.COSREV.2015.03.001
Sinnamon, R.M., Andrews, J.D.: Fault tree analysis and binary decision diagrams. In: Annual Reliability and Maintainability Symposium, pp. 215–222. IEEE (1996)
Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook with aerospace applications (2002)
Sullivan, K.J., Dugan, J.B., Coppit, D.: The Galileo fault tree analysis tool. In: FTCS, pp. 232–235. IEEE Computer Society (1999). https://doi.org/10.1109/FTCS.1999.781056
Vesely, W., Davis, T., Denning, R., Saltos, N.: Measures of risk importance and their applications. Technical report, Battelle Columbus Labs (1983)
Volk, M.: Dynamic fault trees: semantics, analysis and applications. Ph.D. thesis, RWTH Aachen University, Aachen (2022). https://doi.org/10.18154/RWTH-2023-04092
Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018). https://doi.org/10.1109/TII.2017.2710316
Volk, M., Sher, F., Katoen, J.P., Stoelinga, M.: SAFEST: fault tree analysis via probabilistic model checking. In: RAMS, pp. 1–7. IEEE (2024). https://doi.org/10.1109/RAMS51492.2024.10457719
Weik, N., Volk, M., Katoen, J.P., Nießen, N.: DFT modeling approach for operational risk assessment of railway infrastructure. Int. J. Softw. Tools Technol. Transf. 24(3), 331–350 (2022). https://doi.org/10.1007/S10009-022-00652-4
Xie, K., Hu, B., Singh, C.: Reliability evaluation of double 12-pulse ultra HVDC transmission systems. IEEE Trans. Power Deliv. 31(1), 210–218 (2016). https://doi.org/10.1109/TPWRD.2015.2489658
Yevkin, O.: An improved modular approach for dynamic fault tree analysis. In: RAMS, pp. 1–5. IEEE (2011). https://doi.org/10.1109/RAMS.2011.5754437
Acknowledgements
We thank Joost-Pieter for his inspiration and guidance over many years. This Festschrift paper builds upon a long line of fruitful discussions and collaborations with him on (dynamic) fault tree analysis, propelled by his motivation to bring theoretical results into tool support and practical application. Last but not least, we like to thank him for sharing his love of sports, music, and good coffee.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sher, F., Stoelinga, M., Volk, M. (2025). Modular Criticality Analysis for Dynamic Fault Trees. In: Jansen, N., et al. Principles of Verification: Cycling the Probabilistic Landscape . Lecture Notes in Computer Science, vol 15262. Springer, Cham. https://doi.org/10.1007/978-3-031-75778-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-75778-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-75777-8
Online ISBN: 978-3-031-75778-5
eBook Packages: Computer ScienceComputer Science (R0)