Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ORKA: An Ontology for Robotic Knowledge Acquisition

  • Conference paper
  • First Online:
Knowledge Engineering and Knowledge Management (EKAW 2024)

Abstract

Most autonomous agents operating in the real world use perception capabilities and reasoning mechanisms to acquire new knowledge of the environment, where perception capabilities include both the physical sensor devices and the software-based perception pipelines involved in the process. For autonomous agents to be able to adjust and reason over their own perception, knowledge of the sensors and the corresponding perception algorithms is required. We present the Ontology for Robotic Knowledge Acquisition (ORKA), that models the perception pipeline of a robotic agent by representing the sensory, algorithmic and measurement aspects of the perception process, thereby unifying the agent’s sensing with the characteristics of the environment and facilitating the grounding process. The ontology is based on the alignment between SSN and OBOE, linked to external databases as additional knowledge sources for robotic agents, populated with instances from two different robotic use-cases, and evaluated using competency questions and comparisons to related ontologies. A proof of concept use-case is presented to highlight the potential of the ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We consider a “perception algorithm” any algorithmic process that results in new observations about characteristics of objects.

  2. 2.

    https://github.com/Dorteel/orka.

  3. 3.

    http://caressesrobot.org/ontology/.

  4. 4.

    https://pytorch.org/hub/ultralytics_yolov5/.

  5. 5.

    https://github.com/Dorteel/orka.

References

  1. SWRL: A Semantic Web Rule Language Combining OWL and RuleML. https://www.w3.org/submissions/SWRL/

  2. The RDF Data Cube Vocabulary (2014). https://www.w3.org/TR/vocab-data-cube/

  3. Abdelrahman, A.A., Hempel, T., Khalifa, A., Al-Hamadi, A., Dinges, L.: L2CS-Net : fine-grained gaze estimation in unconstrained environments. In: 2023 8th International Conference on Frontiers of Signal Processing (ICFSP), pp. 98–102 (2023). https://doi.org/10.1109/ICFSP59764.2023.10372944

  4. Adamik, M., Pernisch, R., Tiddi, I., Schlobach, S.: Advancing robotic perception with perceived-entity linking. In: The Semantic Web - ISWC 2024 - 23rd International Semantic Web Conference, Baltimore, The United States of America, 11–15 November 2024, Proceedings. Lecture Notes in Computer Science, Springer (2024)

    Google Scholar 

  5. Adamik, M., Schlobach, S.: Towards a definition and conceptualisation of the perceived-entity linking problem. In: RobOntics 2023 Ontologies for Autonomous Robotics 2023. CEUR Workshop Proceedings, CEUR-WS (2023)

    Google Scholar 

  6. Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd edn. MIT Press, Cambridge (2012)

    Google Scholar 

  7. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  8. B’alint-Bencz’edi, F., et al.: RoboSherlock: cognition-enabled robot perception for everyday manipulation tasks. arXiv (2019)

    Google Scholar 

  9. Beetz, M., Balint-Benczedi, F., Blodow, N., Nyga, D., Wiedemeyer, T., Marton, Z.C.: RoboSherlock: unstructured information processing for robot perception. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1549–1556. IEEE, Seattle, WA, USA (2015). https://doi.org/10.1109/ICRA.2015.7139395

  10. Beßler, D., et al.: Foundations of the socio-physical model of activities (SOMA) for autonomous robotic agents (2020). https://doi.org/10.48550/arXiv.2011.11972

  11. Blum, C., Winfield, A.F.T., Hafner, V.V.: Simulation-based internal models for safer robots. Front. Robot. AI 4, 74 (2017). https://doi.org/10.3389/FROBT.2017.00074

  12. Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 58(9), 92–103 (2015). https://doi.org/10.1145/2701413

    Article  Google Scholar 

  13. Engel, U. (ed.): Robots in Care and Everyday Life: Future, Ethics, Social Acceptance. SpringerBriefs in Sociology, Springer, Cham (2023). https://doi.org/10.1007/978-3-031-11447-2

  14. Fischer, L., et al.: Which tool to use? Grounded reasoning in everyday environments with assistant robots. In: Proceedings of the 11th International Workshop on Cognitive Robotics (2018)

    Google Scholar 

  15. Gonçalves, P.J., Torres, P.M.: Knowledge representation applied to robotic orthopedic surgery. Robot. Comput.-Integr. Manuf. 33, 90–99 (2015). https://doi.org/10.1016/j.rcim.2014.08.014, citation Key: orosu

  16. Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10(1), 9–32 (2018). https://doi.org/10.3233/SW-180320

    Article  Google Scholar 

  17. Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrancois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003

    Article  Google Scholar 

  18. Khanday, N.Y., Sofi, S.A.: Taxonomy, state-of-the-art, challenges and applications of visual understanding: a review. Comput. Scie. Rev. 40, 100374 (2021). https://doi.org/10.1016/j.cosrev.2021.100374

  19. Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5589–5595 (2011). https://doi.org/10.1109/ICRA.2011.5980170

  20. Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553 (2010). https://doi.org/10.1109/IROS.2010.5649547

  21. Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41, 492–509 (2011). https://doi.org/10.1109/TSMCA.2010.2076404

    Article  Google Scholar 

  22. Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Eco. Inform. 2(3), 279–296 (2007). https://doi.org/10.1016/j.ecoinf.2007.05.004

    Article  Google Scholar 

  23. Masolo, C., Borgo, S.: Qualities in formal ontology (2010)

    Google Scholar 

  24. Diab, M., Akbari, A., Din, M.U., Rosell, J.: PMK—a knowledge processing framework for autonomous robotics perception and manipulation (2019). https://www.mdpi.com/1424-8220/19/5/1166

  25. Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology (2001)

    Google Scholar 

  26. Prestes, E., Fiorini, S., Carbonera, J.: Core Ontology for Robotics and Automation (2014)

    Google Scholar 

  27. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 779–788. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.91

  28. Rijgersberg, H., Wigham, M., Top, J.L.: How semantics can improve engineering processes: a case of units of measure and quantities. Adv. Eng. Inform. 25(2), 276–287 (2011). https://doi.org/10.1016/j.aei.2010.07.008

    Article  Google Scholar 

  29. Rijgersberg, H., Van Assem, M., Top, J.: Ontology of units of measure and related concepts. Semant. Web 4(1), 3–13 (2013). https://doi.org/10.3233/SW-2012-0069

    Article  Google Scholar 

  30. Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-30301-5

  31. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004

    Article  Google Scholar 

  32. Stenmark, M., Malec, J.: Knowledge-based instruction of manipulation tasks for industrial robotics. Robot. Comput.-Integr. Manuf. 33, 56–67 (2015). https://doi.org/10.1016/j.rcim.2014.07.004, citation Key: rosetta

  33. Tenorth, M., Beetz, M.: KnowRob: a knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32(5), 566–590 (2013). https://doi.org/10.1177/0278364913481635

    Article  Google Scholar 

  34. Thompson, A.: Guide for the Use of the International System of Units (SI)

    Google Scholar 

  35. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

    Article  Google Scholar 

  36. Waibel, M., et al.: RoboEarth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011). https://doi.org/10.1109/MRA.2011.941632

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Adamik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adamik, M., Pernisch, R., Tiddi, I., Schlobach, S. (2025). ORKA: An Ontology for Robotic Knowledge Acquisition. In: Alam, M., Rospocher, M., van Erp, M., Hollink, L., Gesese, G.A. (eds) Knowledge Engineering and Knowledge Management. EKAW 2024. Lecture Notes in Computer Science(), vol 15370. Springer, Cham. https://doi.org/10.1007/978-3-031-77792-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-77792-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-77791-2

  • Online ISBN: 978-3-031-77792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics