Abstract
Most autonomous agents operating in the real world use perception capabilities and reasoning mechanisms to acquire new knowledge of the environment, where perception capabilities include both the physical sensor devices and the software-based perception pipelines involved in the process. For autonomous agents to be able to adjust and reason over their own perception, knowledge of the sensors and the corresponding perception algorithms is required. We present the Ontology for Robotic Knowledge Acquisition (ORKA), that models the perception pipeline of a robotic agent by representing the sensory, algorithmic and measurement aspects of the perception process, thereby unifying the agent’s sensing with the characteristics of the environment and facilitating the grounding process. The ontology is based on the alignment between SSN and OBOE, linked to external databases as additional knowledge sources for robotic agents, populated with instances from two different robotic use-cases, and evaluated using competency questions and comparisons to related ontologies. A proof of concept use-case is presented to highlight the potential of the ontology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We consider a “perception algorithm” any algorithmic process that results in new observations about characteristics of objects.
- 2.
- 3.
- 4.
- 5.
References
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. https://www.w3.org/submissions/SWRL/
The RDF Data Cube Vocabulary (2014). https://www.w3.org/TR/vocab-data-cube/
Abdelrahman, A.A., Hempel, T., Khalifa, A., Al-Hamadi, A., Dinges, L.: L2CS-Net : fine-grained gaze estimation in unconstrained environments. In: 2023 8th International Conference on Frontiers of Signal Processing (ICFSP), pp. 98–102 (2023). https://doi.org/10.1109/ICFSP59764.2023.10372944
Adamik, M., Pernisch, R., Tiddi, I., Schlobach, S.: Advancing robotic perception with perceived-entity linking. In: The Semantic Web - ISWC 2024 - 23rd International Semantic Web Conference, Baltimore, The United States of America, 11–15 November 2024, Proceedings. Lecture Notes in Computer Science, Springer (2024)
Adamik, M., Schlobach, S.: Towards a definition and conceptualisation of the perceived-entity linking problem. In: RobOntics 2023 Ontologies for Autonomous Robotics 2023. CEUR Workshop Proceedings, CEUR-WS (2023)
Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer, 3rd edn. MIT Press, Cambridge (2012)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52
B’alint-Bencz’edi, F., et al.: RoboSherlock: cognition-enabled robot perception for everyday manipulation tasks. arXiv (2019)
Beetz, M., Balint-Benczedi, F., Blodow, N., Nyga, D., Wiedemeyer, T., Marton, Z.C.: RoboSherlock: unstructured information processing for robot perception. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1549–1556. IEEE, Seattle, WA, USA (2015). https://doi.org/10.1109/ICRA.2015.7139395
Beßler, D., et al.: Foundations of the socio-physical model of activities (SOMA) for autonomous robotic agents (2020). https://doi.org/10.48550/arXiv.2011.11972
Blum, C., Winfield, A.F.T., Hafner, V.V.: Simulation-based internal models for safer robots. Front. Robot. AI 4, 74 (2017). https://doi.org/10.3389/FROBT.2017.00074
Davis, E., Marcus, G.: Commonsense reasoning and commonsense knowledge in artificial intelligence. Commun. ACM 58(9), 92–103 (2015). https://doi.org/10.1145/2701413
Engel, U. (ed.): Robots in Care and Everyday Life: Future, Ethics, Social Acceptance. SpringerBriefs in Sociology, Springer, Cham (2023). https://doi.org/10.1007/978-3-031-11447-2
Fischer, L., et al.: Which tool to use? Grounded reasoning in everyday environments with assistant robots. In: Proceedings of the 11th International Workshop on Cognitive Robotics (2018)
Gonçalves, P.J., Torres, P.M.: Knowledge representation applied to robotic orthopedic surgery. Robot. Comput.-Integr. Manuf. 33, 90–99 (2015). https://doi.org/10.1016/j.rcim.2014.08.014, citation Key: orosu
Haller, A., et al.: The modular SSN ontology: a joint W3C and OGC standard specifying the semantics of sensors, observations, sampling, and actuation. Semant. Web 10(1), 9–32 (2018). https://doi.org/10.3233/SW-180320
Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrancois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019). https://doi.org/10.1016/j.websem.2018.06.003
Khanday, N.Y., Sofi, S.A.: Taxonomy, state-of-the-art, challenges and applications of visual understanding: a review. Comput. Scie. Rev. 40, 100374 (2021). https://doi.org/10.1016/j.cosrev.2021.100374
Kunze, L., Roehm, T., Beetz, M.: Towards semantic robot description languages. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5589–5595 (2011). https://doi.org/10.1109/ICRA.2011.5980170
Lemaignan, S., Ros, R., Mösenlechner, L., Alami, R., Beetz, M.: Oro, a knowledge management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3548–3553 (2010). https://doi.org/10.1109/IROS.2010.5649547
Lim, G.H., Suh, I.H., Suh, H.: Ontology-based unified robot knowledge for service robots in indoor environments. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 41, 492–509 (2011). https://doi.org/10.1109/TSMCA.2010.2076404
Madin, J., Bowers, S., Schildhauer, M., Krivov, S., Pennington, D., Villa, F.: An ontology for describing and synthesizing ecological observation data. Eco. Inform. 2(3), 279–296 (2007). https://doi.org/10.1016/j.ecoinf.2007.05.004
Masolo, C., Borgo, S.: Qualities in formal ontology (2010)
Diab, M., Akbari, A., Din, M.U., Rosell, J.: PMK—a knowledge processing framework for autonomous robotics perception and manipulation (2019). https://www.mdpi.com/1424-8220/19/5/1166
Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology (2001)
Prestes, E., Fiorini, S., Carbonera, J.: Core Ontology for Robotics and Automation (2014)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 779–788. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.91
Rijgersberg, H., Wigham, M., Top, J.L.: How semantics can improve engineering processes: a case of units of measure and quantities. Adv. Eng. Inform. 25(2), 276–287 (2011). https://doi.org/10.1016/j.aei.2010.07.008
Rijgersberg, H., Van Assem, M., Top, J.: Ontology of units of measure and related concepts. Semant. Web 4(1), 3–13 (2013). https://doi.org/10.3233/SW-2012-0069
Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-30301-5
Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004
Stenmark, M., Malec, J.: Knowledge-based instruction of manipulation tasks for industrial robotics. Robot. Comput.-Integr. Manuf. 33, 56–67 (2015). https://doi.org/10.1016/j.rcim.2014.07.004, citation Key: rosetta
Tenorth, M., Beetz, M.: KnowRob: a knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32(5), 566–590 (2013). https://doi.org/10.1177/0278364913481635
Thompson, A.: Guide for the Use of the International System of Units (SI)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
Waibel, M., et al.: RoboEarth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011). https://doi.org/10.1109/MRA.2011.941632
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Adamik, M., Pernisch, R., Tiddi, I., Schlobach, S. (2025). ORKA: An Ontology for Robotic Knowledge Acquisition. In: Alam, M., Rospocher, M., van Erp, M., Hollink, L., Gesese, G.A. (eds) Knowledge Engineering and Knowledge Management. EKAW 2024. Lecture Notes in Computer Science(), vol 15370. Springer, Cham. https://doi.org/10.1007/978-3-031-77792-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-77792-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-77791-2
Online ISBN: 978-3-031-77792-9
eBook Packages: Computer ScienceComputer Science (R0)