Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sparse Principal Component Analysis with Missing Observations

  • Conference paper
  • First Online:
High Dimensional Probability VI

Part of the book series: Progress in Probability ((PRPR,volume 66))

Abstract

In this paper, we study the problem of sparse Principal Component Analysis (PCA) in the high dimensional setting with missing observations. Our goal is to estimate the first principal component when we only have access to partial observations. Existing estimation techniques are usually derived for fully observed data sets and require a prior knowledge of the sparsity of the first principal component in order to achieve good statistical guarantees. Our contributions is essentially theoretical in nature. First, we establish the first information-theoretic lower bound for the sparse PCA problem with missing observations. Second, we study the properties of a BIC type estimator that does not require any prior knowledge on the sparsity of the unknown first principal component or any imputation of the missing observations and adapts to the unknown sparsity of the first principal component. Third, if the covariance matrix of interest admits a sparse first principal component and is in addition approximately low-rank, then we can derive a completely datadriven choice of the regularization parameter and the resulting BIC estimator will also enjoy optimal statistical performances (up to a logarithmic factor).

Mathematics Subject Classification (2010). Primary 62H12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Q. Berthet and P. Rigollet. Optimal detection of sparse principal components in high dimension. ArXiv:1202.5070 (2012).

    Google Scholar 

  2. A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal component analysis. Journal of Machine Learning Research 9 (2008), 1269–1294.

    Google Scholar 

  3. M. Hourani and I.M.M. El Emary. Microarray missing values imputation methods: Critical analysis review. Comput. Sci. Inf. Syst. 6(2) (2009), 165–190.

    Article  Google Scholar 

  4. I.M. Johnstone and A.Y. Lu. On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104(486) (2009), 682–693.

    Article  MathSciNet  Google Scholar 

  5. I.T. Jolliffe, N.T. Trendafilov, and M. Uddin. A modified principal component technique based on the LASSO. J. Comput. Graph. Statist. 12(3) (2003), 531–547.

    Article  MathSciNet  Google Scholar 

  6. R. Jörnsten, H.Y. Wang, W.J. Welsh, and M. Ouyang. Dna microarray data imputation and significance analysis of differential expression. Bioinformatics 21(22) (2005), 4155–4161.

    Article  Google Scholar 

  7. M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method for sparse principal component analysis. J. Mach. Learn. Res. 11 (2010), 517–553.

    MathSciNet  MATH  Google Scholar 

  8. K. Lounici. High dimensional covariance matrix estimation with missing observations. ArXiv:1201.2577 (2012).

    Google Scholar 

  9. P. Massart. Concentration inequalities and model selection, volume 1896 of Lecture Notes in Mathematics. Springer, Berlin, 2007. Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003, with a foreword by Jean Picard.

    Google Scholar 

  10. B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse pca: Exact and greedy algorithms. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, 915–922. MIT Press, Cambridge, MA, 2006.

    Google Scholar 

  11. B. Nadler. Finite sample approximation results for principal component analysis: a matrix perturbation approach. Ann. Statist. 36(6) (2008), 2791–2817.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17(4) (2007), 1617–1642.

    MathSciNet  MATH  Google Scholar 

  13. D. Paul and I. Johnstone. Sparse principal component analysis for high dimensional data. ArXiv:1202.1242 (2007).

    Google Scholar 

  14. H. Shen and J.Z. Huang. Sparse principal component analysis via regularized low rank matrix approximation. Multivariate Anal. 99(6) (2008), 1015–1034.

    Article  MathSciNet  MATH  Google Scholar 

  15. A.B. Tsybakov. Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York, 2009. Revised and extended from the 2004 French original, translated by Vladimir Zaiats.

    Google Scholar 

  16. R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. ArXiv:1011.3027v7 (2011).

    Google Scholar 

  17. V.Q. Vu and J. Lei. Minimax rates of estimation for sparse pca in high dimensions. In 15th International Conference on Artificial Intelligence and Statistics (AISTATS) (2012).

    Google Scholar 

  18. M. Zongming. Sparse principal component analysis and iterative thresholding. ArXiv:1112.2432 (2011).

    Google Scholar 

  19. H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. J. Comput. Graph. Statist. 15(2) (2006), 265–286.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Lounici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this paper

Cite this paper

Lounici, K. (2013). Sparse Principal Component Analysis with Missing Observations. In: Houdré, C., Mason, D., Rosiński, J., Wellner, J. (eds) High Dimensional Probability VI. Progress in Probability, vol 66. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0490-5_20

Download citation

Publish with us

Policies and ethics