Abstract
Pairwise dissimilarity representations are frequently used as an alternative to feature vectors in pattern recognition.One of the problems encountered in the analysis of such data, is that the dissimilarities are rarely Euclidean, while statistical learning algorithms often rely on Euclidean distances. Such non-Euclidean dissimilarities are often corrected or imposed geometry via embedding. This talk reviews and and extends the field of analysing non-Euclidean dissimilarity data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94(2), 115–147 (1987)
Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, USA (1995)
Bunke, H., Sanfeliu, A.: Syntactic and Structural Pattern Recognition: Theory and Applications. World Scientific (1990)
Chow, B., Luo, F.: Combinatorial ricci flows on surfaces. Journal of Differential Geometry 63(1), 97–129 (2003)
Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 566–568. IEEE (1994)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, New York (2001)
Duin, R.P.W., Pękalska, E.: Non-Euclidean dissimilarities: causes and informativeness. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 324–333. Springer, Heidelberg (2010)
Duin, R.P.W., Pękalska, E., Harol, A., Lee, W.-J., Bunke, H.: On Euclidean corrections for Non-Euclidean dissimilarities. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 551–561. Springer, Heidelberg (2008)
Gower, J.C.: Properties of euclidean and non-euclidean distance matrices. Linear Algebra and its Applications 67, 81–97 (1985)
Gower, J.C., Legendre, P.: Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3(1), 5–48 (1986)
Gu, X., He, Y., Jin, M., Luo, F., Qin, H., Yau, S.T.: Manifold splines with a single extraordinary point. Computer-Aided Design 40(6), 676–690 (2008)
Haasdonk, B., Pękalska, E.: Indefinite kernel fisher discriminant. In: Proceedings of the International Conference on Pattern Recognition, ICPR 2008 (2008)
Hamilton, R.S.: Three-manifolds with positive Ricci curvature. Journal of Differential Geometry 17(2), 255–306 (1982)
Hamilton, R.S.: The Ricci flow on surfaces. Contemporary Mathematics 71, 237–262 (1988)
Jiang, R., Gu, X.: Multiscale, curvature-based shape representation for surfaces. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2011), pp. 1887–1894 (2011)
Jin, M., Kim, J., Gu, X.: Discrete surface ricci flow: Theory and applications. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 209–232. Springer, Heidelberg (2007)
Jin, M., Luo, F., Gu, X.: Computing surface hyperbolic structure and real projective structure. In: Proceedings of the ACM Symposium on Solid and Physical Modeling (SPM 2006), pp. 105–116. ACM (2006)
Laub, J.: Non-metric pairwise proximity data. Ph.D. thesis, Berlin Institute of Technology (2004)
Laub, J., Roth, V., Buhmann, J.M., Müller, K.R.: On the information and representation of Non-Euclidean pairwise data. Pattern Recognition 39(10), 1815–1826 (2006)
Mitchell, T.M.: Machine learning. McGraw-Hill (1997)
Pękalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific Publishing Company (2005)
Pękalska, E., Duin, R.P.W.: Beyond traditional kernels: classification in two dissimilarity-based representation spaces. IEEE Transactions on Systems, Man and Cybernetics – Part C 38(6) (2008)
Pękalska, E., Duin, R.P.W., Günter, S., Bunke, H.: On not making dissimilarities Euclidean. In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 1145–1154. Springer, Heidelberg (2004)
Pękalska, E.z., Harol, A., Duin, R.P.W., Spillmann, B., Bunke, H.: Non-Euclidean or non-metric measures can be informative. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 871–880. Springer, Heidelberg (2006)
Pękalska, E., Paclik, P., Duin, R.P.W.: A generalized kernel approach to dissimilarity-based classification. The Journal of Machine Learning Research 2, 175–211 (2001)
Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Public Library of Science Biology 4(5), 1–7 (2006)
Poole, D.: Linear algebra: a modern introduction, 2nd edn. Cengage Learning (2006)
Roth, V., Laub, J., Buhmann, J.M., Müller, K.R.: Going metric: Denoising pairwise data. In: Advances in Neural Information Processing Systems 15, pp. 817–824 (2002)
Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13(3), 353–362 (1983)
Sarkar, R., Yin, X., Gao, J., Luo, F., Gu, X.D.: Greedy routing with guaranteed delivery using ricci flows. In: Proceedings of the International Conference on Information Processing in Sensor Networks (IPSN 2009), pp. 121–132. IEEE (2009)
Saucan, E., Appleboim, E., Wolansky, G., Zeevi, Y.Y.: Combinatorial ricci curvature and Laplacians for image processing. In: Proceedings of the 2nd International Congress on Image and Signal Processing (CISP 2009), pp. 1–6. IEEE (2009)
Shapiro, L.G., Haralick, R.M.: A metric for comparing relational descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence 7(1), 90–94 (1985)
Tao, T.: Ricci flow. Tech. rep., Department of Mathematics, University of California, Los Angeles (2008)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Zeng, W., Samaras, D., Gu, D.: Ricci flow for 3D shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(4), 662–677 (2010)
Zeng, W., Yin, X., Zeng, Y., Lai, Y., Gu, X., Samaras, D.: 3D face matching and registration based on hyperbolic Ricci flow. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW 2008), pp. 1–8. IEEE (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Hancock, E.R., Xu, E., Wilson, R.C. (2014). Pattern Recognition with Non-Euclidean Similarities. In: Gruca, D., Czachórski, T., Kozielski, S. (eds) Man-Machine Interactions 3. Advances in Intelligent Systems and Computing, vol 242. Springer, Cham. https://doi.org/10.1007/978-3-319-02309-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-02309-0_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02308-3
Online ISBN: 978-3-319-02309-0
eBook Packages: EngineeringEngineering (R0)