Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

EAGL: An Elliptic Curve Arithmetic GPU-Based Library for Bilinear Pairing

  • Conference paper
Pairing-Based Cryptography – Pairing 2013 (Pairing 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8365))

Included in the following conference series:

  • 1032 Accesses

Abstract

In this paper we present the Elliptic curve Arithmetic GPU-based Library (EAGL), a self-contained GPU library, to support parallel computing of bilinear pairings based on the Compute Unified Device Architecture (CUDA) programming model. It implements parallelized point arithmetic, arithmetic functions in the 1-2-4-12 tower of extension fields. EAGL takes full advantage of the parallel processing power of GPU, with no shared memory bank conflict and minimal synchronization and global memory accesses, to compute some most expensive computational steps, especially the conventional-Montgomery-based multi-precision multiplications. At the 128-bit security level, EAGL can perform 3350.9 R-ate pairings/sec on one GTX-680 controlled by one CPU thread. Extensive experiments suggest that performance tradeoffs between utilization of GPU pipeline vs. memory access latency are highly complex for parallelization of pairing computations. Overall, on-chip memory is the main performance bottleneck for pairing computations on the tested GPU device, and the lazy reduction in \( \mathbb{F}_{q^{2}} \) gives the best performance. Increasing the size of on-chip memory, together with caching and memory prefetching modules are expected to offer substantial performance improvement for GPU-based pairing computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmadi, O., Hankerson, D., Menezes, A.: Software Implementation of arithmetic in GF(3m). In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 85–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Antão, S., Bajard, J.C., Sousa, L.: RNS-based Elliptic Curve Point Multiplication for Massive Parallel Architectures. In the Computer Journal 55(5), 629–647 (2012)

    Article  Google Scholar 

  3. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster explicit formulas for computing pairings over ordinary curves. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Aranha, D.F., Fuentes-Castañeda, L., Knapp, E., Menezes, A., Rodríguez-Henríquez, F.: Implementing pairings at the 192-bit security level. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 177–195. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster Computation of the Tate Pairing. Journal of Number Theory 131(5), 842–857 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babich, R., Clark, M.A., Joo, B., Shi, G., Brower, R.C., Gottlieb, S.: Scaling Lattice QCD beyond 100 GPUs. In: SC 2011 (2011)

    Google Scholar 

  7. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A Quasi-polynomial Algorithm for Discrete Logarithm in Finite Fields of Small Characteristic. In: IACR Cryptology ePrint Archive 2013:400

    Google Scholar 

  8. Bajard, J.C., Didier, L.S., Kornerup, P.: An RNS Montgomery Modular Multiplication Algorithm. IEEE Transaction on Computers 47(7), 766–776 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bajard, J.C., Didier, L.S.: Modular Multiplication and Base Extensions in Residue Number Systems. In: IEEE Symposium on Computer Arithmetic, pp. 59–65 (2001)

    Google Scholar 

  10. Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient Pairing Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptography 42(3), 239–271 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Order. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Benger, N., Scott, M.: Constructing Tower Extensions of Finite Fields for Implementation of Pairing-Based Cryptography. Cryptology ePrint Archive (2009), http://eprint.iacr.org/2009/556.pdf

  13. Bernstein, D.J., Lange, T.: Faster Addition and Doubling on Elliptic Curves. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 29–50. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Bernstein, D.J., Chen, T.-R., Cheng, C.-M., Lange, T., Yang, B.-Y.: ECM on Graphics Cards. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 483–501. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Beuchat, J.-L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Rodríguez-Henríquez, F., Teruya, T.: High-speed software implementation of the optimal ate pairing over barreto–naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge University Press (1999)

    Google Scholar 

  17. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Boxall, J., El Mrabet, N., Laguillaumie, F., Le, D.-P.: A variant of miller’s formula and algorithm. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 417–434. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. De Caro, A., Iovino, V., Persiano, G.: Fully secure anonymous HIBE and secret-key anonymous IBE with short ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 347–366. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.: FPGA implementation of pairings using residue number system and lazy reduction. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Chung, J., Hasan, M.A.: Asymmetric Squaring Formulae. In: ARITH 2007, pp. 113–122 (2007)

    Google Scholar 

  22. Costello, C., Lange, T., Naehrig, M.: Faster pairing computations on curves with high-degree twists. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 224–242. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over barreto-naehrig curves. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 197–207. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Duan, P.: Oblivious Handshakes and Computing of Shared Secrets: Pairwise Privacy-preserving Protocols for Internet Applications. Ph.D. Dissertation, https://repositories.tdl.org/tdl-ir/handle/1969.1/ETD-TAMU-2011-05-9445

  25. Duursma, I.M., Lee, H.-S.: Tate Pairing Implementation for Hyperelliptic Curves y 2 = x p − x + d. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 111–123. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Freeman, D., Scott, M., Teske, E.: A Taxonomy of Pairing-friendly Elliptic Curves. Journal of Cryptology 23, 224–280 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Frey, G., Rück, H.G.: A Remark Concerning m-divisibility and the Discrete Logarithm in the Divisor Class Group of Curves. Math. Comp. 62(206), 865–874 (1994)

    MATH  MathSciNet  Google Scholar 

  29. Fiore, D., Gennaro, R., Smart, N.P.: Constructing certificateless encryption and ID-based encryption from ID-based key agreement. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 167–186. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryptography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 518–535. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate pairing on hyperelliptic curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 430–447. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Granger, R., Scott, M.: Faster squaring in the cyclotomic subgroup of sixth degree extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 209–223. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans. on Inform. Theory 52, 4595–4602 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Huang, Q., Wong, D.S., Susilo, W.: A new construction of designated confirmer signature and its application to optimistic fair exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 41–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  35. Katoh, Y., Huang, Y.J., Cheng, C.M., Takagi, T.: Efficient Implementation of the eta Pairing on GPU. Cryptology ePrint Archive, http://eprint.iacr.org/2011/540.pdf

  36. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  37. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  38. Koblitz, N.: A Security Weakness in Composite-Order Pairing-Based Protocols with Embedding Degree k > 2. Cryptology ePrint Archive, http://eprint.iacr.org/2010/227.ps

  39. Lee, J., Lakshminarayana, N.B., Kim, H., Vuduc, R.: Many-Thread Aware Prefetching Mechanisms for GPGPU Applications. In: MICRO 2010, pp. 213-224 (2010)

    Google Scholar 

  40. Lee, E.J., Lee, H.S., Park, C.M.: Efficient and Generalized Pairing Computation on Abelian Varieties. IEEE Transactions on Information Theory 55(4), 1793–1803 (2009)

    Article  Google Scholar 

  41. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  42. Longa, P., Gebotys, C.: Analysis of Efficient Techniques for Fast Elliptic Curve Cryptography on x86-64 based Processors. IACR Cryptology ePrint Archive, 335, 1–34 (2010)

    Google Scholar 

  43. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  44. Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate and twisted ate pairings. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 302–312. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  45. Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: The case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  46. MIRACL: Multiprecision Integer and Rational Arithmetic Cryptographic Library, http://www.certivox.com/miracl

  47. Mitsunari, S.: A Fast Implementation of the Optimal Ate Pairing over BN curve on Intel Haswell Processor. In: IACR eprint archive 2013: 362

    Google Scholar 

  48. Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of Computation 44(1985), 519–521 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  49. Naehrig, M., Niederhagen, R., Schwabe, P.: New software speed records for cryptographic pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  50. Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pairings. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 171–186. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  51. Pecarina, J., Pu, S., Liu, J.C.: SAPPHIRE: Anonymity for Enhanced Control and Private Collaboration in Healthcare Clouds. In: CloundCom 2012, pp. 99–106 (2012)

    Google Scholar 

  52. Pereira, G.C.C.F., Simplcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and Software 84(8), 1319–1326 (2011)

    Article  Google Scholar 

  53. Raya, M., Hubaux, J.P.: Securing Vehicular Ad Hoc Networks. Journal of Computer Security 15, 39–68 (2007)

    Google Scholar 

  54. Scott, M.: Implementing Cryptographic Pairings. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 177–196. Springer, Heidelberg (2007)

    Google Scholar 

  55. Scott, M.: Faster pairings using an elliptic curve with an efficient endomorphism. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 258–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  56. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  57. Scott, M.: A Note on Twists for Pairing Friendly Curves, ftp://ftp.computing.dcu.ie/pub/crypto/twists.pdf

  58. Scott, M., Barreto, P.S.L.M.: Compressed pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  59. Smart, N.P., Warinschi, B.: Identity based group signatures from hierarchical identity-based encryption. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 150–170. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  60. Stam, M., Lenstra, A.K.: Efficient Subgroup Exponentiation in Quadratic and Sixth Degree Extensions. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 318–332. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  61. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryptography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 79–99. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  62. Vercauteren, F.: Optimal Pairings. IEEE Transaction of Information Theory 56(1), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

  63. Wang, L., Wang, L., Mambo, M., Okamoto, E.: New identity-based proxy re-encryption schemes to prevent collusion attacks. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 327–346. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  64. Wei, L., Liu, J.: Shorter verifier-local revocation group signature with backward unlinkability. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 136–146. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  65. Yoneyama, K.: Strongly Secure Two-Pass Attribute-Based Authenticated Key Exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 147–166. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  66. Zhang, Y., Xue, C.J., Wong, D.S., Mamoulis, N., Yiu, S.M.: Acceleration of Composite Order Bilinear Pairing on Graphics Hardware. Cryptology ePrint Archive, http://eprint.iacr.org/2011/196.pdf

  67. Zhao, C.A., Zhang, F., Huang, J.: A Note on the Ate Pairing. International Journal of Information Security 6(7), 379–382 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Pu, S., Liu, JC. (2014). EAGL: An Elliptic Curve Arithmetic GPU-Based Library for Bilinear Pairing. In: Cao, Z., Zhang, F. (eds) Pairing-Based Cryptography – Pairing 2013. Pairing 2013. Lecture Notes in Computer Science, vol 8365. Springer, Cham. https://doi.org/10.1007/978-3-319-04873-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04873-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04872-7

  • Online ISBN: 978-3-319-04873-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics