Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Big Data Management Systems for the Exploitation of Pervasive Environments

  • Chapter
  • First Online:
Big Data and Internet of Things: A Roadmap for Smart Environments

Part of the book series: Studies in Computational Intelligence ((SCI,volume 546))

Abstract

The amount of available data has exploded significantly in the past years, due to the fast growing number of services and users producing vast amounts of data. The Internet of Things (IoT) has given rise to new types of data, emerging for instance from the collection of sensor data and the control of actuators. The explosion of devices that have automated and perhaps improved the lives of all of us has generated a huge mass of information that will continue to grow exponentially. For this reason the need to store, manage, and treat the ever increasing amounts of data that comes via the Internet of Things has become urgent. In this context, Big Data becomes immensely important, making possible to turn into this amount of data in information, knowledge, and, ultimately, wisdom. The aim of this chapter is to provide an original solution that uses Big Data technologies for redesigning an IoT context aware application for the exploitation of pervasive environment addressing problems and discussing the important aspects of the selected solution. The chapter also provides a survey of Big Data technical and technological solutions to manage the amounts of data that comes via the Internet of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gartner: Hype cycle for big data, 2012. Technical report (2012)

    Google Scholar 

  2. IBM, Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. 1st edn. McGraw-Hill Osborne Media, New York (2011)

    Google Scholar 

  3. Gartner: Pattern-based strategy: Getting value from big data. Technical report (2011)

    Google Scholar 

  4. Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., Tufano, P.: Analytics: The real-world use of big data. IBM Institute for Business Value—executive report, IBM Institute for Business Value (2012)

    Google Scholar 

  5. Evans, D.: The internet of things—how the next evolution of the internet is changing everything. Technical report (2011)

    Google Scholar 

  6. Stonebraker, M., Cetintemel, U.: One size fits all: an idea whose time has come and gone. In: Proceedings of the 21st International Conference on Data Engineering. ICDE’05, Washington, DC, USA, pp. 2–11. IEEE Computer Society (2005)

    Google Scholar 

  7. Gajendran, S.K.: A survey on nosql databases. Technical report (2012)

    Google Scholar 

  8. Cattell, R.: Scalable sql and nosql data stores. Technical report (2012)

    Google Scholar 

  9. DataStax: A guide to big data workload-management challenges. Technical report (2012)

    Google Scholar 

  10. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33, 51–59 (2002)

    Article  Google Scholar 

  11. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC’00, p. 7. ACM, New York (2000)

    Google Scholar 

  12. Strauch, C.: Nosql databases (2011) (Online; 26 July 2013)

    Google Scholar 

  13. Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the world wide web. In: Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing STOC’97, pp. 654–663. ACM, New York (1997)

    Google Scholar 

  14. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)

    Article  Google Scholar 

  15. Apache: Hadoop (2012) (Online 26 July 2013)

    Google Scholar 

  16. Jo Foley, M.: Microsoft drops dryad; puts its big-data bets on hadoop. Technical report (2011)

    Google Scholar 

  17. Locatelli, O.: Extending nosql to handle relations in a scalable way models and evaluation framework (2012012)

    Google Scholar 

  18. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, Incorporated (2013)

    Google Scholar 

  19. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst. Rev. 41, 205–220 (2007)

    Article  Google Scholar 

  20. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21, 558–565 (1978)

    Article  MATH  Google Scholar 

  21. Sumbaly, R., Kreps, J., Gao, L., Feinberg, A., Soman, C., Shah, S.: Serving large-scale batch computed data with project voldemort. (2009)

    Google Scholar 

  22. Voldemort: Project voldemort a distributed database. (2012) (Online; 26 July 2013)

    Google Scholar 

  23. Memcached: Memcached (2012) (Online; 26 July 2013)

    Google Scholar 

  24. Redis: Redis (2012) (Online; 26 July 2013)

    Google Scholar 

  25. Riak: Riak (2012) (Online; 26 July 2013)

    Google Scholar 

  26. Amazon: Simpledb (2012) (Online; 26 July 2013)

    Google Scholar 

  27. Apache: Couchdb (2012) (Online; 26 July 2013)

    Google Scholar 

  28. Couchbase: Couchbase (2012) (Online; 26 July 2013)

    Google Scholar 

  29. MongoDB: Mongodb (2012) (Online; 26 July 2013)

    Google Scholar 

  30. RavenDB: Ravendb (2012) (Online; 26 July 2013)

    Google Scholar 

  31. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26, 4:1–4:26 (2008)

    Google Scholar 

  32. HBase: Hbase (2012) (Online; 26 July 2013)

    Google Scholar 

  33. Hypertable: Hypertable (2012) (Online; 26 July 2013)

    Google Scholar 

  34. Cassandra: Cassandra (2012) (Online; 26 July 2013)

    Google Scholar 

  35. BigFoot: Current practices of big data analytics. Technical report (2013)

    Google Scholar 

  36. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.A., Mankovskii, S.: Solving big data challenges for enterprise application performance management. Proc. VLDB Endow. 5, 1724–1735 (2012)

    Google Scholar 

  37. Neo Technology, I.: Neo4j, the world’s leading graph database. (2012) (Online; 26 July 2013)

    Google Scholar 

  38. AllegroGraph: Allegrograph (2012) (Online; 26 July 2013)

    Google Scholar 

  39. InfiniteGraph: Infinitegraph (2012) (Online; 26 July 2013)

    Google Scholar 

  40. findthebest.com: Compare nosql databases (2012) (Online; 26 July 2013)

    Google Scholar 

  41. Oracle: Big data for the enterprise. Technical report (2013)

    Google Scholar 

  42. Nessi: Nessi white paper on big data. Technical report (2012)

    Google Scholar 

  43. Amato, A., Di Martino, B., Venticinque, S.: Bdi intelligent agents for augmented exploitation of pervasive environments. In: WOA, pp. 81–88. (2011)

    Google Scholar 

  44. Amato, A., Di Martino, B., Venticinque, S.: Semantically augmented exploitation of pervasive environments by intelligent agents. In: ISPA, pp. 807–814. (2012)

    Google Scholar 

  45. Aversa, R., Di Martino, B., Venticinque, S.: Distributed agents network for ubiquitous monitoring and services exploitation. 2, 197–204 (2009)

    Google Scholar 

  46. Renda, G., Gigli, S., Amato, A., Venticinque, S., Martino, B.D., Cappa, F.R.: Mobile devices for the visit of “anfiteatro campano” in santa maria capua vetere. In: EuroMed, pp. 281–290. (2012)

    Google Scholar 

  47. Amato, A., Di Martino, B., Venticinque, S.: A semantic framework for delivery of context-aware ubiquitous services in pervasive environments, pp. 412–419. (2012)

    Google Scholar 

  48. Amato, A., Di Martino, B., Scialdone, M., Venticinque, S.: Personalized recommendation of semantically annotated media contents. In: Intelligent Distributed Computing VII, vol. 511, pp. 261–270. Springer International Publishing, Switzerland (2013)

    Google Scholar 

  49. RDF: Rdf (2012) (Online; 26 July 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alba Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amato, A., Venticinque, S. (2014). Big Data Management Systems for the Exploitation of Pervasive Environments. In: Bessis, N., Dobre, C. (eds) Big Data and Internet of Things: A Roadmap for Smart Environments. Studies in Computational Intelligence, vol 546. Springer, Cham. https://doi.org/10.1007/978-3-319-05029-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05029-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05028-7

  • Online ISBN: 978-3-319-05029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics