Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Asset Price Modeling: From Fractional to Multifractional Processes

  • Chapter
  • First Online:
Future Perspectives in Risk Models and Finance

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 211))

Abstract

This contribution surveys the main characteristics of two stochastic processes that generalize the fractional Brownian motion: the multifractional Brownian motion and the multifractional processes with random exponent. A special emphasis will be devoted to the meaning and to the applications that they can have in finance. If fractional Brownian motion is by now very well-known and studied as a model of the price dynamics, multifractional processes are yet widely unknown in the field of quantitative finance, mainly because of their nonstationarity. Nonetheless, in spite of their complex structure, such processes deserve consideration for their capability to seize the stylized facts that most of the current models cannot account for. In addition, their functional parameter provides an insightful and parsimonious interpretation of the market mechanism, and is able to unify in a single model two opposite approaches such as the theory of efficient markets and the behavioral finance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Remind that the random process \(Y_{t,\tau}\), \(\tau>t\), is a stochastic discount factor (or pricing kernel) if (a) \(\mathbb{P}(Y_{t,t}=1,Y_{t,\tau}>0)=1\), and (b) \(S_t=\mathbb{E}^\mathbb{P}_t[Y_{t,\tau}S_\tau]\).

  2. 2.

    The definition of Hölder exponent will be given in paragraph 2; here, we just recall that it measures the degree of irregularity of the graph of a function.

  3. 3.

    The distinction between these two ways of measuring the local regularity is not just a mathematical detail, since-as proved in (Ayache 2013)-while the trajectories of an arbitrary centered Gaussian process share the same global (uniform) as well as local Hölder regularity, the same property does not hold with respect to the pointwise Hölder regularity.

  4. 4.

    We remind that the stochastic process \(\left\{X(t,\omega)\right\}_{t\in T}\) is said self-similar of parameter H if for any \(a>0\) and \(t\in T\), it is \(\{X(at,\,\omega )\}\overset{d}{\mathop{=}}\,\,\{{{a}^{H}}X(t,\,\omega )\}\), where the equality holds for the finite-dimensional distributions of \(\left\{X(t,\omega)\right\}\).

  5. 5.

    Actually, processes having properties similar to those displayed by the fBm were considered, at least implicitly, by (Kolmogorov 1940; Hunt 1951; Lamperti 1962; Yaglom 1958; Yaglom 1968).

  6. 6.

    The fBm can be also defined in terms of random wavelet series as

    $$\bar{B}(x,H) = \sum_{j=-\infty}^{+\infty} \sum_{k \in \mathbb{Z}} 2^{-jH} \epsilon_{j,k} \left(\Psi(2^jx-k,H) -\Psi(-k,H) \right)$$
    (10)

    where \(\left\{\epsilon_{j,k}\right\}_{(j,k)\in \mathbb{Z}^2}\) is a sequence of independent \(N(0,1)\) random variables; \(\Psi \in C^\infty(\mathbb{R}\times(0,1))\) is well-localized in the first variable and uniformly localized in H, which means that, for all \((n,p)\in \mathbb{N}^2\), \(\sup \left\{(1+|x|)^p|(\partial_x^{(n)}\Psi)(x,H)|:(x,H)\in \mathbb{R}\times(0,1)\right\}<+\infty.\) This representation-which allows to define the MPRE (see below) also when its random exponent depends on the Brownian measure-is almost surely uniformly convergent in \((x,H)\) on each compact subset of \(\mathbb{R}\times(0,1)\).

  7. 7.

    The corrections mainly concerned the revision of classical definitions of arbitrage and self-financing condition (Hu and Oksendal 2003; Elliott and Van Der Hoek 2003); the regularization of the weighting kernel of the fBm (Rogers 1997; Cheridito 2001), the introduction of transaction costs (Guasoni 2006 or of delays in transaction times Cheridito 2003).

  8. 8.

    Remind that the function h(t) is Hölderian of order β on each compact interval \(J \subset \mathbb{R}\) if, for each \(t,s \in J\) and for \(c>0\), it holds \(|h(t)-h(s)| \leq c|t-s|^\beta\), where \(\beta> \max_{t \in J}h(t)\).

  9. 9.

    Indeed, (Ayache and Taqqu 2005) provide sufficient conditions for a multifractional process with random functional parameter to be self-similar (in the sense of its marginal distributions) or to have stationary increments.

  10. 10.

    To avoid ambiguity, when necessary, we write explicitly ω for the stochastic process.

  11. 11.

    Basically, with regard to the process X sampled at N times, the generalized quadratic variation is defined as \(V_N=\sum_{p=0}^{N-2}\left(X\left(\frac{p+2}{N}\right)-2X\left(\frac{p+1}{N}\right)+X\left(\frac{p}{N}\right)\right)^2\); the variation serves to define the estimator \(\hat{h}_N=\frac{1}{2}\left(1-\frac{lnV_N}{lnN}\right)\) which, under some assumptions on the function h(t), satisfies \(lim_{N\rightarrow+\infty}\hat{h}_N=inf_{t\in(0,1)}h(t)\) almost surely. The result stated for the infimum provides the way to estimate h itself at any point \(t\in(0,1)\); in fact choosing a proper \((\epsilon,N)\)-neighborhood of t one can calculate the generalized quadratic variation \(V_{\epsilon,N}\) and hence the estimator \(\hat{h}_{\epsilon,N}\), that satisfies \(lim_{N\rightarrow+\infty}\hat{h}_{\epsilon,N}=inf_{|s-t|<\epsilon}h(s)\) (a.s). Letting ϵ tend to zero one gets an estimate of h(t).

  12. 12.

    The variance in (23) follows from assuming a smooth h(t). In fact, from (16) it follows:

    $$\begin{aligned} Var\left(X_{t}-X_{s}\right)&=\mathbb{E}\left(X_{t}-X_{s}\right)^{2} -\left(\mathbb{E}(X_{t}-X_{s})\right) ^{2}= \mathbb{E}\left(X_{t}^{2}+X_{s}^{2}-2X_{t}X_{s}\right) = \\ &= t^{2h(t)}+s^{2h(s)}-D(h(t),h(s))\left(t^{h(t)+h(s)}+s^{h(t)+h(s)}-|t-s|^{h(t)+h(s)}\right)\\ &= t^{h(t)}(t^{h(t)}-D(h(t),h(s))t^{h(s)})+s^{h(s)}(s^{h(s)}-D(h(t),h(s))s^{h(t)}) + \\ & \hspace{6cm} + D(H_{t},H_{s})|t-s|^{h(t)+h(s)}.\end{aligned}$$

    Since \(\lim_{|h(t)-h(s)| \rightarrow 0}D(h(t),h(s))=1\), whenever \(h(t)\approx h(s)\), one has \(Var\left(X_{t}-X_{s}\right) \approx |t-s|^{2h(t)}\). Assuming that the mBm is sampled in discrete time over n points with \(Var(X_{n}-X_{0})=K^{2}\) entails therefore

    $$\begin{aligned}Var\left(X_{\frac{t+q}{n-1}}-X_{\frac{t}{n-1}}\right) \cong K^{2}\left | \frac{t+q}{n-1}-\frac{t}{n-1} \right | ^{2h\left(\frac{t}{n-1}\right)} = K^{2}\left(\frac{q}{n-1}\right) ^{2h\left(\frac{t}{n-1}\right)}\end{aligned}$$

    that the variance in (23)

  13. 13.

    For \(h \not= \frac{1}{2}\), the variance of \(h_{\delta,q,n,1}^k(t)\) is hard to deduce because of the term σ2 that appears in the variance of (30).

  14. 14.

    Function L is slowly varying at infinity if \(\lim_{t \to \infty} \frac{L(\alpha t)}{L(t)}=1 \text{ for some} \alpha \in \mathbb{R^+}\)

  15. 15.

    To avoid confusion with the notation, here we indicate the order of the absolute moment by s (instead of k used for \(h_{\delta,q,n,K}^{k}(t)\)).

  16. 16.

    Using the two-sided Lilliefors test at different significance levels, Bianchi and Pianese 2008 show that, consistently with the mBm/MPRE model, the empirical significance values of three main stock indexes converge to the nominal ones as δ decreases. Although this suggests to maintain δ as short as possible in order to ensure the normality of data, a trade-off problem arises because the estimator’s variance increases as the length of the window decreases. The discussion of this effect leads the authors in (Bianchi and Pianese 2008) to set \(\delta=30\).

  17. 17.

    This assumption is not restrictive, since it has just been shown that k = 2 minimizes the estimator’s variance (see Remark 14).

  18. 18.

    Likewise the notation already introduced, from now on the subscript will refer to the discrete time sampling.

  19. 19.

    Using a time changing δ (see Remark 14) produces very similar results, hence to save the homogeneity of the results we have chosen a fixed window of proper length.

  20. 20.

    The Jarque-Bera test quantifies the distance from the Gaussian distribution in terms of skewness and kurtosis and then computes a single p value using the sum of these discrepancies.

References

  • Arneodo, A., E. Bacry, and J. F. Muzy. 1998. Random cascades on wavelet dyadic trees. Journal of Mathematical Physics 39:4142–4164.

    Article  Google Scholar 

  • Ayache, A.. 2000. The generalized multifractional Brownian motion can be multifractal. Publications du Laboratoire de statistique et probabilités 22.

    Google Scholar 

  • Ayache, A. 2013. Continuous gaussian multifractional processes with random pointwise Hölder regularity. Journal of Theoretical Probability 26:72–93.

    Article  Google Scholar 

  • Ayache, A., and J. Lévy Véhel. 2000. The generalized multifractional brownian motion. Statistical Inference for Stochastic Processes 3:7–18.

    Google Scholar 

  • Ayache, A., and J. Lévy Véhel. 2004. On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stochastic Processes and their Applications 111:119–156.

    Article  Google Scholar 

  • Ayache, A., and M.S. Taqqu. 2005. Multifractional processes with random exponent. Publicacions Matemàtiques 49:459–486.

    Article  Google Scholar 

  • Ayache, A., S. Cohen, and J. Lévy Véhel. 2000. The covariance structure of multifractional Brownian motion, with application to long range dependence. In ICASSP '00: Proceedings of the Acoustics, Speech, and Signal Processing, 2000. on IEEE International Conference, IEEE Computer Society, Washington, DC, USA, ISBN 0-7803-6293-4, pp. 3810–3813, doi:http://dx.doi.org/10.1109/ICASSP.2000.860233.

  • Ayache, A., S. Benassi, S. Cohen, and J. Lévy Véhel. 2005. Regularity and identification of generalized multifractional Gaussian processes. Séminaire de Probabilités XXXVIII, Lecture Notes in Math 1857:290–312.

    Google Scholar 

  • Ayache, A., P. R. Bertrand, and J. Lévy Véhel. 2007. A central limit theorem for the quadratic variations of the step fractional Brownian motion. Statistical Inference for Stochastic Processes 10:1–27.

    Article  Google Scholar 

  • Baillie, R. T.. 1996. Long memory processes and fractional integration in econometrics. Journal of Econometrics 73:5–59.

    Google Scholar 

  • Bansal, R., and A. Yaron. 2004. Risks for the long-run: A potential resolution of asset pricing puzzles. Journal of Finance 59:1481–1509.

    Article  Google Scholar 

  • Bayraktar, E., U. Horst, and R. Sircar. 2006. A limit theorem for financial markets with inert investors. Mathematics of Operations Research 31:789–710.

    Google Scholar 

  • Benassi, A., S. Jaffard, and D. Roux. 1997. Gaussian processes and pseudodifferential elliptic operators. Revista Mathematica Iberoamericana 13:19–89.

    Article  Google Scholar 

  • Benassi, A., S. Cohen, and J. Istas. 1998. Identifying the multifractional function of a Gaussian process. Statistics and Probability Letters 39:337–345.

    Article  Google Scholar 

  • Benassi, A., S. Cohen, J. Istas, and S. Jaffard. 1998. Identification of filtered white noises. Stochastic Processes and their Applications 75:31–49.

    Article  Google Scholar 

  • Benassi, A., P. Bertrand, S. Cohen, and J. Istas. 1999. Identification d’un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 329:435–440.

    Google Scholar 

  • Benassi, Albert, Pierre Bertrand, Serge Cohen, and Jacques Istas. 2000. Identification of the hurst index of a step fractional brownian motion. Statistical Inference for Stochastic Processes 3:101–111.

    Article  Google Scholar 

  • Bender, C., T. Sottinen, and E. Valkeila. 2007. Arbitrage with fractional Brownian motion? Theory of Stochastic Processes 13:23–34.

    Google Scholar 

  • Bertrand, Pierre. 2005. Financial modelling by multiscale fractional Brownian motion. In Fractals in Engineering, eds. Jacques Lévy Véhel and Evelyne Lutton, 181–196. London: Springer.

    Google Scholar 

  • Bertrand, Pierre, Abdelkader Hamdouni, and Samia Khadhraoui. 2012. Modelling NASDAQ series by sparse multifractional Brownian motion. Methodology and Computing in Applied Probability 14:107–124.

    Article  Google Scholar 

  • Bianchi, S.. 2005. A cautionary note on the detection of multifractal scaling in finance and economics. Applied Economics Letters 12:775–780.

    Article  Google Scholar 

  • Bianchi, S. 2005. Pathwise identification of the memory function of the multifractional Brownian motion with application to finance. International Journal of Theoretical and Applied Finance 8:255–281.

    Article  Google Scholar 

  • Bianchi, S., and A. Pianese. 2007. Modelling stock price movements: Multifractality or multifractionality? Quantitative Finance 19:301–319.

    Article  Google Scholar 

  • Bianchi, S., and A. Pianese. 2008. Multifractional properties of stock indices decomposed by filtering their pointwise Hölder regularity. International Journal of Theoretical and Applied Finance 11:567–595.

    Article  Google Scholar 

  • Bianchi, S., and A. Pantanella. 2010. Pointwise regularity exponents and market cross-correlations. International Review of Business Research Papers 6:39–51.

    Google Scholar 

  • Bianchi, S., and A. Pantanella. 2011. Pointwise regularity exponents and well-behaved residuals in stock markets. International Journal of Trade, Economics and Finance 2:52–60.

    Article  Google Scholar 

  • Bianchi, S., A. Pantanella, and A. Pianese. 2013. Modeling stock prices by multifractional Brownian motion: An improved estimation of the pointwise regularity. Quantitative Finance 13:1317–1330.

    Article  Google Scholar 

  • Calvet, L., and A. Fischer. 2002. Multifractality in asset returns: Theory and evidence. The Review of Economics and Statistics 84:381–406.

    Article  Google Scholar 

  • Calvet, L., A. Fischer, and B. B. Mandelbrot. 1997. A multifractal model of asset returns. Cowles Foundation Discussion Paper, Yale University, 1164.

    Google Scholar 

  • Calvet, Laurent E., and Adlai J. Fisher. 2008. Multifractal volatility: Theory, forecasting, and pricing. Elsevier: Academic Press.

    Google Scholar 

  • Campbell, J.Y., and J. H. Cochrane. 1999. By force of habit: A consumption-based explanation of aggregate stock market behavior. Journal of Political Economy 107:205–251.

    Article  Google Scholar 

  • Chan, G., and A. Wood. 1998. Simulation of multifractional Brownian motion. Proceedings in Computational Statistics, pp. 233–238.

    Google Scholar 

  • Cheridito, P. 2001. Regularizing fractional Brownian motion with a view towards stock price modelling. Ph.D. thesis, Eidgenöss Technische Hochschule Zürich, Swiss Federal Institute of Technology.

    Google Scholar 

  • Cheridito, P. 2003. Arbitrage in fractional brownian motion models. Finance and Stochastics 7:533–553.

    Article  Google Scholar 

  • Coeurjolly, J. F. 2000. Inférence statistique pour les mouvements browniens fractionnaires et multifractionnaires, Ph. D. Thesis.

    Google Scholar 

  • Coeurjolly, J. F. 2005. Identification of the multifractional Brownian motion. Bernoulli 11:987–1008.

    Article  Google Scholar 

  • Coeurjolly, J. F.. 2008. Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Annals of Statistics 36:1404–1434.

    Article  Google Scholar 

  • Cohen, S. 1999. Chapter I. In From self-similarity to local self-similarity: The estimation problem, pages 3–16. ed. M. Dekking, J. Lévy-Véhel, E. Lutton, and C. Tricot, 3–16. Springer Berlin/Heidelberg

    Google Scholar 

  • Cont, R. 2001. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance 1:223–236.

    Article  Google Scholar 

  • Costa, Rogério L., and G. L. Vasconcelos. 2003. Long-range correlations and nonstationarity in the Brazilian stock market. Physica A: Statistical Mechanics and its Applications 329:231–248.

    Article  Google Scholar 

  • Dasgupta, A., and G. Kallianpur. 2000. Arbitrage opportunities for a class of Gladyshev processes. Applied Mathematics and Optimization 41:377–385.

    Article  Google Scholar 

  • Decreusefond, L., and S. A. Ãœstünel. 1999. Stochastic analysis of the fractional brownian Motion. Potential Analysis 10:177–214.

    Article  Google Scholar 

  • Delbaen, F., and W. Schachermayer. 1994. A general version of the fundamental theorem of asset pricing. Mathematische Annalen 300:463–520.

    Article  Google Scholar 

  • Elliott, R. J., and J. Van Der Hoek. 2003. A general fractional white noise theory and applications to finance. Mathematical Finance 13:301–330.

    Article  Google Scholar 

  • Fama, E. F. 1970. Efficient capital markets: A review of theory and empirical work. The Journal of Finance 25:383–417.

    Article  Google Scholar 

  • Fama, E.F., and K.R. French. 1988. Permanent and temporary components of stock prices. Journal of Political Economy 22:246–273.

    Article  Google Scholar 

  • Fama, E. F.. 1998. Market efficiency, long-term returns, and behavioral finance. Journal of Financial Economics 49 (3): 283–306.

    Article  Google Scholar 

  • Guasoni, P.. 2006. No arbitrage under transaction cost, with fractional Brownian motion and beyond. Mathematical Finance 16:569–582.

    Article  Google Scholar 

  • Henry, M., and P. Zaffaroni. 2003. Chapter III In The long range dependence paradigm for macroeconomics and finance, ed. Birkhäuser P. Doukhan, G. Oppenheim, and M.S. Taqqu, 417–438.

    Google Scholar 

  • Hu, Y., and B. Øksendal. 2003. Fractional white noise calculus and applications to finance. Infinite Dimensional Analysis, Quantum Probability and Related Topics 6:1–32.

    Article  Google Scholar 

  • Hunt, G. A.. 1951. Random fourier transforms. Transactions of the American Mathematica 71:38–69.

    Article  Google Scholar 

  • Istas, J., and G. Lang. 1997. Quadratic variations and estimation of the local Hölder index of a Gaussian process. Annales de l’Institut Henri Poincare (B) Probability and Statistics 33:407–436.

    Article  Google Scholar 

  • Jarque, C. M., and A. K. Bera. 1987. A test for normality of observations and regression residuals. International Statistical Review 55:163–172.

    Article  Google Scholar 

  • Protter, P., R. A. Jarrow, and H. Sayit. 2009. No arbitrage without semimartingales. The Annals of Applied Probability 19:596–616.

    Article  Google Scholar 

  • Kahneman, D., and A. Tversky 1979. Prospect theory: An analysis of decision under risk. Econometrica 47 (2): 263–292.

    Article  Google Scholar 

  • Kolmogorov, A. N. 1940. Wienershe spiralen und einige andere interessante Kurven im Hilbertishen Raum. DAS of the URSS (Nat. Sciences) 26:115–118.

    Google Scholar 

  • Kolwankar, K. M. and J. Lévy Véhel. 2002. A time domain characterization of the fine local regularity of functions. Journal of Fourier Analysis and Applications 8:319–334.

    Article  Google Scholar 

  • Lamperti, J. 1962. Semi-stable stochastic process. Transactions of The American Mathematical Society 104:62–78.

    Google Scholar 

  • Lévy Véhel, J., and O. Barriére. 2008. Local Hölder regularity-based modeling of RR intervals. Proceedings of the 21th IEEE international symposium on computer-based medical systems, pp. 75–80.

    Google Scholar 

  • Lo, A. W. 2004. The adaptive markets hypothesis: Market efficiency from an evolutionary perspective. Journal of Portfolio Management 30:15–29.

    Article  Google Scholar 

  • Lo, A. W. 2005. Reconciling efficient markets with behavioral finance: The adaptive market hypothesis. Journal of Investment Consulting 7 (2): 21–44.

    Google Scholar 

  • Lo, A. W.. 2012. Adaptive markets and the new world order. Financial Analysts Journal 68:18–29.

    Article  Google Scholar 

  • Loutridis, S. J.. 2007. An algorithm for the characterization of time-series based on local regularity. Physica A Statistical Mechanics and its Applications 381:383–398.

    Article  Google Scholar 

  • Lustig, H. and S. Van Nieuwerburgh. 2005. Consumption Insurance and risk premia: An empirical perspective. Journal of Finance 60:1167–1219.

    Article  Google Scholar 

  • Mandelbrot, B. B., and J. W. Van Ness. 1968. Fractional brownian motions, Fractional noises and applications. SIAM Review 10:422–437.

    Article  Google Scholar 

  • Papanicolaou, G. C., and K. Sbibølna. 2002. Wavelet based estimation of local Kolmogorov turbulence. In Long-range dependence: Theory and applications. Birkhäuser, pp. 473–506.

    Google Scholar 

  • Péltier, R.S., and J. Lévy Véhel. 1994. A new method for estimating the parameter of fractional Brownian motion. Technical report, CCSd/HAL: E-articles server (based on gBUS) [http://hal.ccsd.cnrs.fr/oai/oai.php] (France), http://hal.inria.fr/inria-00074279/en/.

  • Péltier, R. S., and J. Lévy Véhel. 1995. Multifractional Brownian Motion: Definition and preliminary results, Technical report, INRIA, citeseer. ist.psu.edu/peltier95multifractional.html.

    Google Scholar 

  • Riedi, R. H. 2002. In Multifractal processes, ed. Birkhäuser P. Doukhan. G. Oppenheim, and M. Taqqu, pp. 625–715.

    Google Scholar 

  • Rogers, L. C. G. 1997. Arbitrage with fractional Brownian motion. Mathematical Finance 7:95–105.

    Article  Google Scholar 

  • Sewell, M. 2007. Behavioural finance. http://www.behaviouralfinance.net/behavioural-finance.pdf.

  • Hersh, Shefrin, and Meir Statman. 1994. Behavioral capital asset pricing theory. The Journal of Financial and Quantitative Analysis 29:323–349.

    Article  Google Scholar 

  • Hersh Shefrin and Meir Statman. 2000. Behavioral portfolio theory. The Journal of Financial and Quantitative Analysis 35:127–151.

    Article  Google Scholar 

  • Shefrin, H. M. and R. H. Thaler. 1988. Hyothesis The Behavioral life-cycle. Economic Inquiry 26:609–643.

    Article  Google Scholar 

  • Shiller, R. J. 1984. Stock prices and social dynamics. Technical report, Brookings Papers on Economic Activity.

    Google Scholar 

  • Shiryayev, A. N. 1998. On arbitrage and replication for fractal models. Technical report, Department of Mathematical Sciences, University of Aarhus, Denmark.

    Google Scholar 

  • Stoev, A. S., and M. S. Taqqu. 2006. How rich is the class of multifractional Brownian motions? Stochastic Processes and their Applications 116:200–221.

    Article  Google Scholar 

  • Summers, L. H.. 1986. Does the stock market rationally reflect fundamental values? Journal of Finance 41:591–601.

    Article  Google Scholar 

  • Tapiero, Charles. 2010. Risk finance and asset pricing. New York: Wiley.

    Google Scholar 

  • Tapiero, C. S. 2013. Re-Engineering risks and the future of finance, 233–250. London: EURO-MONEY Books.

    Google Scholar 

  • Tapiero, C.S., and P. Vallois. 2000. The inter-event range process and testing for chaos in time series. Neural Network World 10 (1–2) 89–99.

    Google Scholar 

  • Tapiero, C. S., and P. Vallois. 2007. Memory-based persistence in a counting random walk process. Physica A: Statistical Mechanics and its Applications 386 (1): 303–317.

    Article  Google Scholar 

  • Vallois, P., and C. S. Tapiero. 1996. Run length statistics and the Hurst exponent in random and birth-death random walks. Chaos, Solitons & Fractals 7 (9): 1333–1341.

    Article  Google Scholar 

  • Vallois, P., and C. S. Tapiero. 1997. Range reliability in random walks, Mathematical methods of operations research. Physica A: Statistical Mechanics and its Applications 45 (3): 325–345.

    Google Scholar 

  • Vallois, P., and C. S. Tapiero. 2001. The range inter-event process in a symmetric birth death random walk. Applied Stochastic Models in Business and Industry 17 (3): 293–306.

    Article  Google Scholar 

  • Vallois, P., and C. S. Tapiero. 2008. Volatility estimators and the inverse range process in a random volatility random walk and Wiener processes. Physica A: Statistical Mechanics and its Applications 387 (11): 2565–2574.

    Article  Google Scholar 

  • Yaglom, A. M. 1958. Correlation theory of processes with random stationary n thincrements. American Mathmathical Society Translations. 2:87–141.

    Google Scholar 

  • Yaglom, A. M. 1965. Stationary gaussian processes satisfying the strong mixing condition and best predictable functionals. In Proceedings international research seminar. p. 241–252.

    Google Scholar 

  • Yen, G. 2008. Efficient market hypothesis (EMH): Past, present and future. Review of Pacific Basin Financial Markets and Policies 11:305–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Bianchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bianchi, S., Pianese, A. (2015). Asset Price Modeling: From Fractional to Multifractional Processes. In: Bensoussan, A., Guegan, D., Tapiero, C. (eds) Future Perspectives in Risk Models and Finance. International Series in Operations Research & Management Science, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-07524-2_7

Download citation

Publish with us

Policies and ethics