Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Broadcast Problem in Hypercube of Trees

  • Conference paper
Frontiers in Algorithmics (FAW 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8497))

Included in the following conference series:

Abstract

Broadcasting is an information dissemination problem in a connected network in which one node, called the originator, must distribute a message to all other nodes by placing a series of calls along the communication lines of the network. Every time the informed nodes aid the originator in distributing the message. Finding the broadcast time of any vertex in an arbitrary graph is NP-complete. The polynomial time solvability is shown only for certain graphs like trees, unicyclic graphs, tree of cycles, necklace graphs, fully connected trees and tree of cliques. In this paper we study the broadcast problem in a hypercube of trees for which we present a 2-approximation algorithm for any originator. We also provide a linear algorithm to find the broadcast time in hypercube of trees with one tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Multicasting in heterogeneous networks. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 448–453 (1998)

    Google Scholar 

  2. Beier, R., Sibeyn, J.F.: A powerful heuristic for telephone gossiping. In: Proceedings of the 7th International Colloquium on Structural Information Communication Complexity (SIROCCO 2000), pp. 17–36 (2000)

    Google Scholar 

  3. Elkin, M., Kortsarz, G.: Combinatorial logarithmic approximation algorithm for directed telephone broadcast problem. In: Proceedings of the Thirty-fourth Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 438–447 (2002)

    Google Scholar 

  4. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast: path out of jungle (extended abstract). In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 76–85 (2003)

    Google Scholar 

  5. Fraigniaud, P., Vial, S.: Approximation algorithms for broadcasting and gossiping. J. Parallel and Distrib. Comput. 43(1), 47–55 (1997)

    Article  Google Scholar 

  6. Fraigniaud, P., Vial., S.: Heuristic algorithms for personalized communication problems in point-to-point networks. In: Proceedings of the 4th Colloquium on Structural Information Communication Complexity (SIROCCO 1997), pp. 240–252 (1997)

    Google Scholar 

  7. Fraigniaud, P., Vial, S.: Comparison of heuristics for one-to-all and all-to-all communication in partial meshes. Parallel Processing Letters 9, 9–20 (1999)

    Article  Google Scholar 

  8. Harutyunyan, H.A., Laza, G., Maraachlian, E.: Broadcasting in necklace graphs. In: Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering (C3S2E 2009), pp. 253–256 (2009)

    Google Scholar 

  9. Harutyunyan, H., Maraachlian, E.: Linear algorithm for broadcasting in unicyclic graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 372–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J. Comb. Optim. 16(3), 307–322 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harutyunyan, H.A., Maraachlian, E.: Broadcasting in fully connected trees. In: Proceedings of the 2009 15th International Conference on Parallel and Distributed Systems (ICPADS 2009), pp. 740–745 (2009)

    Google Scholar 

  12. Harutyunyan, H.A., Shao, B.: An efficient heuristic for broadcasting in networks. J. Parallel Distrib. Comput. 66(1), 68–76 (2006)

    Article  MATH  Google Scholar 

  13. Harutyunyan, H.A., Wang, W.: Broadcasting algorithm via shortest paths. In: Proceedings of the 2010 IEEE 16th International Conference on Parallel and Distributed Systems (ICPADS 2010), pp. 299–305 (2010)

    Google Scholar 

  14. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast. SIAM J. Discrete Math. 8, 401–427 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Middendorf, M.: Minimum broadcast time is np-complete for 3-regular planar graphs and deadline 2. Inf. Proc. Lett. 46, 281–287 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 202–213 (1994)

    Google Scholar 

  17. Scheuermann, P., Wu, G.: Heuristic algorithms for broadcasting in point-to-point computer networks. IEEE Trans. Comput. 33(9), 804–811 (1984)

    Article  Google Scholar 

  18. Schindelhauer, C.: On the inapproximability of broadcasting time. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 226–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  19. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J. Comput. 10(4), 692–701 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhabak, P., Harutyunyan, H.A. (2014). Broadcast Problem in Hypercube of Trees. In: Chen, J., Hopcroft, J.E., Wang, J. (eds) Frontiers in Algorithmics. FAW 2014. Lecture Notes in Computer Science, vol 8497. Springer, Cham. https://doi.org/10.1007/978-3-319-08016-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08016-1_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08015-4

  • Online ISBN: 978-3-319-08016-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics