Abstract
Broadcasting is an information dissemination problem in a connected network in which one node, called the originator, must distribute a message to all other nodes by placing a series of calls along the communication lines of the network. Every time the informed nodes aid the originator in distributing the message. Finding the broadcast time of any vertex in an arbitrary graph is NP-complete. The polynomial time solvability is shown only for certain graphs like trees, unicyclic graphs, tree of cycles, necklace graphs, fully connected trees and tree of cliques. In this paper we study the broadcast problem in a hypercube of trees for which we present a 2-approximation algorithm for any originator. We also provide a linear algorithm to find the broadcast time in hypercube of trees with one tree.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Multicasting in heterogeneous networks. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC 1998), pp. 448–453 (1998)
Beier, R., Sibeyn, J.F.: A powerful heuristic for telephone gossiping. In: Proceedings of the 7th International Colloquium on Structural Information Communication Complexity (SIROCCO 2000), pp. 17–36 (2000)
Elkin, M., Kortsarz, G.: Combinatorial logarithmic approximation algorithm for directed telephone broadcast problem. In: Proceedings of the Thirty-fourth Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 438–447 (2002)
Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast: path out of jungle (extended abstract). In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2003), pp. 76–85 (2003)
Fraigniaud, P., Vial, S.: Approximation algorithms for broadcasting and gossiping. J. Parallel and Distrib. Comput. 43(1), 47–55 (1997)
Fraigniaud, P., Vial., S.: Heuristic algorithms for personalized communication problems in point-to-point networks. In: Proceedings of the 4th Colloquium on Structural Information Communication Complexity (SIROCCO 1997), pp. 240–252 (1997)
Fraigniaud, P., Vial, S.: Comparison of heuristics for one-to-all and all-to-all communication in partial meshes. Parallel Processing Letters 9, 9–20 (1999)
Harutyunyan, H.A., Laza, G., Maraachlian, E.: Broadcasting in necklace graphs. In: Proceedings of the 2nd Canadian Conference on Computer Science and Software Engineering (C3S2E 2009), pp. 253–256 (2009)
Harutyunyan, H., Maraachlian, E.: Linear algorithm for broadcasting in unicyclic graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 372–382. Springer, Heidelberg (2007)
Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J. Comb. Optim. 16(3), 307–322 (2008)
Harutyunyan, H.A., Maraachlian, E.: Broadcasting in fully connected trees. In: Proceedings of the 2009 15th International Conference on Parallel and Distributed Systems (ICPADS 2009), pp. 740–745 (2009)
Harutyunyan, H.A., Shao, B.: An efficient heuristic for broadcasting in networks. J. Parallel Distrib. Comput. 66(1), 68–76 (2006)
Harutyunyan, H.A., Wang, W.: Broadcasting algorithm via shortest paths. In: Proceedings of the 2010 IEEE 16th International Conference on Parallel and Distributed Systems (ICPADS 2010), pp. 299–305 (2010)
Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast. SIAM J. Discrete Math. 8, 401–427 (1995)
Middendorf, M.: Minimum broadcast time is np-complete for 3-regular planar graphs and deadline 2. Inf. Proc. Lett. 46, 281–287 (1993)
Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 202–213 (1994)
Scheuermann, P., Wu, G.: Heuristic algorithms for broadcasting in point-to-point computer networks. IEEE Trans. Comput. 33(9), 804–811 (1984)
Schindelhauer, C.: On the inapproximability of broadcasting time. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 226–237. Springer, Heidelberg (2000)
Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees. SIAM J. Comput. 10(4), 692–701 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Bhabak, P., Harutyunyan, H.A. (2014). Broadcast Problem in Hypercube of Trees. In: Chen, J., Hopcroft, J.E., Wang, J. (eds) Frontiers in Algorithmics. FAW 2014. Lecture Notes in Computer Science, vol 8497. Springer, Cham. https://doi.org/10.1007/978-3-319-08016-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-08016-1_1
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08015-4
Online ISBN: 978-3-319-08016-1
eBook Packages: Computer ScienceComputer Science (R0)