Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Effective Palm Tracking with Integrated Tracker and Offline Detector

  • Conference paper
Intelligent Computing Methodologies (ICIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8589))

Included in the following conference series:

Abstract

In this paper, we propose a vision based palm tracking method with three inherently connected components: i) an offline palm detector that locates all possible palm-like objects; ii) a SURF-based tracking module that identifies the tracked palm’s location using historical information; iii) an adaptive skin color model and a patch similarity calculation module. The outputs from the last component can effectively eliminate false detections and decide which palm is under tracking and also provide updated information to the first two modules. In summary, our work makes the following contributions: i) an effective offline palm detector; ii) a benchmark dataset for training and testing palm detectors; iii) an effective solution to tackling the challenges of palm tracking in adverse environments including occlusions, changing illumination and lack of context. Experiment results show that our method compare favorably with other popular tracking techniques such as Camshift and TLD in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhu, Y.M., Yang, Z.B., Yuan, B.: Vision Based Hand Gesture Recognition. In: 2013 International Conference on Service Science, pp. 260–265 (2013)

    Google Scholar 

  2. Li, C., Kitani, M.K.: Pixel-Level Hand Detection in Ego-Centric Videos. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3570–3577 (2013)

    Google Scholar 

  3. Chen, Q., Georganas, N.D., Petriu, E.M.: Real-Time Vision-Based Hand Gesture Recognition Using Haar-like Features. In: 2007 IEEE Instrumentation and Measurement Technology Conference, pp. 1–6 (2007)

    Google Scholar 

  4. Wu, Y., Huang, T.S.: View-Independent Recognition of Hand Postures. In: 2000 IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 88–94 (2000)

    Google Scholar 

  5. Wu, Y., Liu, Q., Huang, T.S.: An Adaptive Self-Organizing Color Segmentation Algorithm with Application to Robust Real-Time Human Hand Localization. In: 2000 Asian Conference on Computer Vision, pp. 1106–1110 (2000)

    Google Scholar 

  6. Dadgostar, F., Sarrafzadeh, A.: An Adaptive Real-Time Skin Detector Based on Hue Thresholding: A Comparison on Two Motion Tracking Methods. Pattern Recognition Letters 27(12), 1342–1352 (2006)

    Article  Google Scholar 

  7. Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: 2001 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)

    Google Scholar 

  8. Ong, E.J., Bowden, R.: A Boosted Classifier Tree for Hand Shape Detection. In: 6th Automatic Face and Gesture Recognition, pp. 889–894 (2004)

    Google Scholar 

  9. Karlinsky, L., Dinerstein, M., Harari, D.: The Chains Model for Detecting Parts by Their Context. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition, pp. 25–32 (2010)

    Google Scholar 

  10. Kumar, M.P., Zisserman, A., Torr, P.H.: Efficient Discriminative Learning of Parts-Based Models. In: 12th International Conference on Computer Vision, pp. 552–559 (2009)

    Google Scholar 

  11. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From Contours to Regions: An Empirical Evaluation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2294–2301 (2009)

    Google Scholar 

  12. Mittal, A., Zisserman, A., Torr, P.H.: Hand Detection Using Multiple Proposals. In: 22nd British Machine Vision Conference, 75.1-75.11 (2011)

    Google Scholar 

  13. Kolsch, M., Turk, M.: Fast 2D Hand Tracking with Flocks of Features and Multi-Cue Integration. In: IEEE Workshop on Real-Time Vision for Human-Computer Interaction, pp. 158–165 (2004)

    Google Scholar 

  14. Bretzner, L., Laptev, I., Lindeberg, T.: Hand Gesture Recognition Using Multi-Scale Color Features, Hierarchical Models and Particle Filtering. In: 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 423–428 (2002)

    Google Scholar 

  15. Kalal, Z., Krystian, M.K., Matas, J.: Tracking-Learning-Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  16. Rittscher, J., Tu, P.H., Krahnstoever, N.: Simultaneous Estimation of Segmentation and Shape. In: 2005 IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 486–493 (2005)

    Google Scholar 

  17. http://www.iis.ee.ic.ac.uk/~tkkim/ges_db.htm

  18. http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

  19. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: 7th International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

    Google Scholar 

  20. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-Backward Error: Automatic Detection of Tracking Failures. In: 20th International Conference on Pattern Recognition, pp. 2756–2759 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, Z., Zhu, Y., Yuan, B. (2014). Effective Palm Tracking with Integrated Tracker and Offline Detector. In: Huang, DS., Jo, KH., Wang, L. (eds) Intelligent Computing Methodologies. ICIC 2014. Lecture Notes in Computer Science(), vol 8589. Springer, Cham. https://doi.org/10.1007/978-3-319-09339-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09339-0_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09338-3

  • Online ISBN: 978-3-319-09339-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics