Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Data Fusion of Environment-Perception Sensors for ADAS

  • Living reference work entry
  • First Online:
Handbook of Driver Assistance Systems

Abstract

More and more driver assistance systems are based on a fusion of multiple environment perception sensors. This chapter gives an overview about the objectives of sensor data fusion approaches, explains the main components involved in the perception process, and explains the special topics that need to be taken into consideration in developing a multi-sensor fusion system for driver assistance systems. Focus is put on the topics of data association, tracking, classification, and the underlying architecture. The architecture strongly influences the costs, performance, and the development process of a multi-sensor fusion system. As there are no deterministic methods that guarantee an optimal solution for developing an architecture, the chapter gives an overview of established, general architecture patterns in the field of sensor data fusion and discusses their benefits and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bar-Shalom Y (2002) Update with out-of-sequence measurements in tracking: exact solution. IEEE Trans Aerosp Electron Syst 3:769–777

    Article  Google Scholar 

  • Bar-Shalom Y, Li XR (1995) Multitarget-multisensor tracking – principles and techniques. YBS, Storrs

    Google Scholar 

  • Bar-Shalom Y, Li XR, Kirubarajan T (2001) Estimation with applications to tracking and navigation – theory, algorithms and software. Wiley, New York

    Book  Google Scholar 

  • Becker JC (2002) Fusion der Daten der objekterkennenden Sensoren eines autonomen Straßenfahrzeugs (Fusion of data from object detecting sensors in an autonomous road vehicle). VDI-Verl, Düsseldorf

    Google Scholar 

  • Bender E et al (2007) Anti collision system proreta – on the way to the collision avoiding vehicle – part 1: basics of the system. ATZ Wordwide 109(4):20–23

    Google Scholar 

  • Darms M (2007) Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren für Fahrerassistenzsysteme (A baseline system architecture for sensor data fusion of environment sensors for driver assistance systems) Fortschrittberichte VDI, Series 12, vol 653

    Google Scholar 

  • Darms M, Rybski P, Urmson C (2008) Vehicle detection and tracking for the urban challenge, AAET 2008, 9th symposium, 13/14 Feb 2008, Braunschweig

    Google Scholar 

  • Darms M, Rybski P, Baker C, Urmson C (2009) Obstacle detection and tracking for the urban challenge. IEEE Trans Intell Transp Syst 10(3):475–485

    Article  Google Scholar 

  • Dietmayer K, Kirchner A, Kampchen N (2005) Fusionsarchitekturen zur Umfeldwahrnehmung für zukünftige Fahrerassistenzsysteme (Fusion architectures for environmental perception in future driver assistance systems). In: Mauerer M (ed) Fahrerassistenzsysteme mit maschineller Wahrnehmung (Driver assistance systems with mechanical perception). Springer, New York, pp 59–87

    Chapter  Google Scholar 

  • Föllinger O (1990) Regelungstechnik – Einführung in die Methoden und ihre Anwendung (Control theory – introduction to methods and their application), 6th issue. Hüthig Buch Verlag, Heidelberg

    Google Scholar 

  • Hall DL (2001) Handbook of multisensor data fusion. CRC Press, Boca Raton

    Google Scholar 

  • Hall D, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6–23

    Article  Google Scholar 

  • Hall DL, McMullen SA (2004) Mathematical techniques in multisensor data fusion, 2nd edn. Artech House, Boston

    MATH  Google Scholar 

  • Hänsler E (1997) Statistische Signale: Grundlagen und Anwendungen (Statistical signals: basics and applications), 2nd issue. Springer, Berlin

    Google Scholar 

  • Holt Vv (2004) Integrale multisensorielle Fahrumgebungserfassung nach dem 4D-Ansatz (Integral multi-sensorial environmental acquisition based on the 4-D approach), Diss. Univ. der Bundeswehr, Munich (online publication), URL: urn:nbn:de:bvb:706–1072. http://athene-forschung.unibw.de/doc/85338/85338.pdf. Accessed 31 Jan 2015

  • Joerg KW (1994) Echtzeitfähige Multisensorintegration für autonome Mobile Roboter (Real-time capable multi-sensor integration for autonomous mobile robots). BI-Wiss.-Verl., Mannheim

    Google Scholar 

  • Kampchen N, Dietmayer K (2003) Data synchronization strategies for multi-sensor fusion. In: 10th world congress on intelligent transport systems. Band Proceedings of IST 2003. Madrid

    Google Scholar 

  • Klaus F (2004) Einführung in Techniken und Methoden der Multisensor-Datenfusion (Introduction to the techniques and methods of multi-sensor data fusion). Habil.-Schr. Univ. Siegen, online publication, URL: urn:nbn:de:hbz:467–575; http://www.ub.uni-siegen.de/pub/diss/fb12/2003/klaus/klaus.pdf. Accessed 31 Jan 2015

  • Klein LA (1999) Sensor and data fusion concepts and applications, 2nd issue, vol 35. SPIE, Bellingham

    Google Scholar 

  • Lou RC, Kay MK (1991) Multisensor integration and fusion in intelligent systems. In: Autonomous mobile robots, Bd. 1. IEEE Computer Society Press, Los Alamitos

    Google Scholar 

  • Lunze J (2006) Regelungstechnik Mehrgrößensysteme, digitale Regelung (Control theory on multiple value systems, digital control), vol 2. Springer, Berlin

    Google Scholar 

  • Mauthener M et al (2006) Out-of-sequence measurements treatment in sensor fusion applications: buffering versus advances algorithms. In: Stiller C, Maurer M (Hrsg) 4. Workshop Fahrerassistenzsysteme FAS2006 (Driver assistance systems workshop), pp 20–30. fmrt, Karlsruhe

    Google Scholar 

  • Mayr R (2001) Regelungsstrategien fur die automatische Fahrzeugführung: Längs- und Querregelung, Spurwechselund Ãœberholmanöver (Control strategies for automatic vehicle guidance: longitudinal and latitudinal control, lane changing and overtaking manoeuvres). Springer, Tokyo

    Google Scholar 

  • Narbe B et al (2003a) Datennetzkonzepte für die Sensordatenfusion – Teil 1 (Data network concepts for sensor data fusion – part 1). Elektronik Automotive 4:54–59

    Google Scholar 

  • Narbe B et al (2003b) Datennetzkonzepte für die Sensordatenfusion – Teil 2 (Data network concepts for sensor data fusion – part 2). Elektronik Automotive 5:40–44

    Google Scholar 

  • Robinson G, Aboutalib A (1990) Trade-off analysis of multisensor fusion levels. In: Proceedings of the 2nd national symposium on sensors and sensor fusion, No 2, Chicago, IL, pp 21–34

    Google Scholar 

  • Schopper M, Henle L, Wohland T (2013) Intelligent Drive Vernetzte Intelligenz für mehr Sicherheit (Intelligent Drive – networked intelligence for improved safety). ATZExtra 5:106–114

    Article  Google Scholar 

  • Starke G (2005) Effektive Software-Architekturen – Ein praktischer Leitfaden (Effective software architectures – a practical guide), 2nd issue Hanser, Wien

    Google Scholar 

  • Steinberg A, Bowman C, White F (1998) Revisions to the JDL data fusion model. Quebec City

    Google Scholar 

  • Streller D (2006) Multi-Hypothesen-Ansatz zur Erkennung und Verfolgung von Objekten in Verkehrsszenen mit Laserscannern (Multi-hypotheses approach for detection and tracking of objects in traffic scenarios with laser scanners). VDI-Verl, Düsseldorf

    Google Scholar 

  • Stüker D (2004) Heterogene Sensordatenfusion zur robusten Objektverfolgung im automobilen Straßenverkehr. (Heterogenous sensor data fusion for robust object tracking in automotive road traffic), Diss. Univ. Oldenburg, (online publication), URL: urn:nbn:de:gbv:715-oops-2319; http://oops.uni-oldenburg.de/201/1/stuhet04.pdf. Accessed 31 Jan 2015

  • Vogel O (2005) Software-Architektur – Grundlagen – Konzepte – Praxis (Software architecture – basics – concepts – practical applications), 1st issue Elsevier, Spektrum, Akad. Verl., Munich

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Darms .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Darms, M. (2015). Data Fusion of Environment-Perception Sensors for ADAS. In: Winner, H., Hakuli, S., Lotz, F., Singer, C. (eds) Handbook of Driver Assistance Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-09840-1_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09840-1_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-09840-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics