Abstract
The Lucas-Kanade (LK) method is a classic tracking algorithm exploiting target structural constraints thorough template matching. Extended Lucas Kanade or ELK casts the original LK algorithm as a maximum likelihood optimization and then extends it by considering pixel object / background likelihoods in the optimization. Template matching and pixel-based object / background segregation are tied together by a unified Bayesian framework. In this framework two log-likelihood terms related to pixel object / background affiliation are introduced in addition to the standard LK template matching term. Tracking is performed using an EM algorithm, in which the E-step corresponds to pixel object/background inference, and the M-step to parameter optimization. The final algorithm, implemented using a classifier for object / background modeling and equipped with simple template update and occlusion handling logic, is evaluated on two challenging data-sets containing 50 sequences each. The first is a recently published benchmark where ELK ranks 3rd among 30 tracking methods evaluated. On the second data-set of vehicles undergoing severe view point changes ELK ranks in 1st place outperforming state-of-the-art methods.
Chapter PDF
Similar content being viewed by others
References
Appel, R., Fuchs, T., Dollar, P., Perona, P.: Quickly boosting decision trees a pruning underachieving features early. In: ICML (2013)
Avidan, S.: Support vector tracking. PAMI (2004)
Avidan, S.: Ensemble tracking. In: CVPR (2005)
Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)
Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated proximal gradient approach. In: CVPR (2012)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: CVPR (2000)
Cootes, T., Edwards, G., Taylor, C.: Active appearance models. TPAMI (2001)
DeGroot, M.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38 (1977)
Dinh, T.B., Vo, N., Medioni., G.: Context tracker: Exploring supporters and distracters in unconstrained environments. In: CVPR (2011)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via online boosting. In: BMVC (2006)
Hare, S., Saffari, A., Torr., P.H.S.: Struck: Structured output tracking with kernels. In: ICCV (2011)
Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012)
Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR (2012)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. TPAMI (2010)
Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)
Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV (2011)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR (2011)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proccedings of Imageing Understanding Workshop (1981)
Matthews, I., Baker, S.: Lucas-kanade 20 years on: A unifying framework. IJCV (2004)
Matthews, I., Ishikawa, T., Baker, S.: The template update problem. TPAMI (2004)
Oron, S., Bar-Hillel, A., Avidan, S.: Real time tracking-with-detection. Submitted to Machine Vision and Applications (2014)
Oron, S., Hillel, A.B., Levi, D., Avidan, S.: Locally orderless tracking. In: CVPR (2012)
Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV (2007)
Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. PAMI (2000)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR (2013)
Xiang, Y., Song, C., Mottaghi, R., Savarese, S.: Monocular multiview object tracking with 3d aspect parts. In: European Conference on Computer Vision, ECCV (2014)
Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM. Comp. Survey 38(4) (2006)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Oron, S., Bar-Hille, A., Avidan, S. (2014). Extended Lucas-Kanade Tracking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds) Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Springer, Cham. https://doi.org/10.1007/978-3-319-10602-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-10602-1_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-10601-4
Online ISBN: 978-3-319-10602-1
eBook Packages: Computer ScienceComputer Science (R0)