Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantified Conjunctive Queries on Partially Ordered Sets

  • Conference paper
  • First Online:
Parameterized and Exact Computation (IPEC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8894))

Included in the following conference series:

Abstract

We study the computational problem of checking whether a quantified conjunctive query (a first-order sentence built using only conjunction as Boolean connective) is true in a finite poset (a reflexive, antisymmetric, and transitive directed graph). We prove that the problem is already \(\mathrm {NP}\)-hard on a certain fixed poset, and investigate structural properties of posets yielding fixed-parameter tractability when the problem is parameterized by the query. Our main algorithmic result is that model checking quantified conjunctive queries on posets of bounded width is fixed-parameter tractable (the width of a poset is the maximum size of a subset of pairwise incomparable elements). We complement our algorithmic result by complexity results with respect to classes of finite posets in a hierarchy of natural poset invariants, establishing its tightness in this sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Existential and universal logic are maximal syntactic fragments properly contained in first-order logic.

  2. 2.

    Conjunctive positive logic and existential (respectively, universal) logic are incomparable syntactic fragments of first-order logic.

References

  1. Bova, S., Ganian, R., Szeider, S.: Model checking existential logic on partially ordered sets. In: CSL-LICS. Preprint in CoRR. abs/1405.2891 (2014)

  2. Bova, S., Ganian, R., Szeider, S.: Quantified conjunctive queries on partially ordered sets. Preprint in CoRR, abs/1408.4263 (2014)

  3. Börner, F., Bulatov, A., Chen, H., Jeavons, P., Krokhin, A.: The complexity of constraint satisfaction games and QCSP. Inform. Comput. 207(9), 923–944 (2009)

    Article  MATH  Google Scholar 

  4. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  5. Chen, H., Dalmau, V.: Decomposing quantified conjunctive (or Disjunctive) formulas. In: LICS (2012)

    Google Scholar 

  6. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inform. Comput. 85(1), 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theor. Comput. Syst. 33(2), 125–150 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  9. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics, vol. 1. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1–24 (2007)

    Article  MathSciNet  Google Scholar 

  11. Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Model Theoretic Methods in Finite Combinatorics, pp. 181–206. AMS, Providence (2011)

    Google Scholar 

  12. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: STOC, 2014. Preprint in CoRR. abs/131.3899 (2013)

  13. Nešetřil, J., de Mendez, P.O.: Sparsity. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Pratt, V.R., Tiuryn, J.: Satisfiability of inequalities in a poset. Fund. Inform. 28(1–2), 165–182 (1996)

    MATH  MathSciNet  Google Scholar 

  15. Seese, D.: Linear time computable problems and first-order descriptions. Math. Struct. Comp. Sci. 6(6), 505–526 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was supported by the European Research Council (Complex Reason, 239962) and the FWF Austrian Science Fund (Parameterized Compilation, P26200 and X-TRACT, P26696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Bova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bova, S., Ganian, R., Szeider, S. (2014). Quantified Conjunctive Queries on Partially Ordered Sets. In: Cygan, M., Heggernes, P. (eds) Parameterized and Exact Computation. IPEC 2014. Lecture Notes in Computer Science(), vol 8894. Springer, Cham. https://doi.org/10.1007/978-3-319-13524-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13524-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13523-6

  • Online ISBN: 978-3-319-13524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics