Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Exploiting Query History for Adaptive Ontology-Based Visual Query Formulation

  • Conference paper
Metadata and Semantics Research (MTSR 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 478))

Included in the following conference series:

Abstract

Grounded on real industrial use cases, we recently proposed an ontology-based visual query system for SPARQL, named OptiqueVQS. Ontology-based visual query systems employ ontologies and visual representations to depict the domain of interest and queries, and are promising to enable end users without any technical background to access data on their own. However, even with considerably small ontologies, the number of ontology elements to choose from increases drastically, and hence hinders usability. Therefore, in this paper, we propose a method using the log of past queries for ranking and suggesting query extensions as a user types a query, and identify emerging issues to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Giese, M., Calvanese, D., Horrocks, I., Ioannidis, Y., Klappi, H., Koubarakis, M., Lenzerini, M., Moller, R., Ozcep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra, A. (ed.) Big Data Computing. Chapman and Hall/CRC (2013)

    Google Scholar 

  2. Catarci, T., Costabile, M.F., Levialdi, S., Batini, C.: Visual query systems for databases: A survey. Journal of Visual Languages and Computing 8(2), 215–260 (1997)

    Article  Google Scholar 

  3. Lieberman, H., Paternó, F., Klann, M., Wulf, V.: End-User Development: An Emerging Paradigm. In: Lieberman, H., Paternó, F., Wulf, V. (eds.) End-User Development. Human-Computer Interaction Series, vol. 9, pp. 1–8. Springer, Netherlands (2006)

    Chapter  Google Scholar 

  4. Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I.: OptiqueVQS – Towards an Ontology-based Visual Query System for Big Data. In: Proceedings of the International Conference on Management of Emergent Digital EcoSystems (MEDES 2013), pp. 119–126. ACM (2013)

    Google Scholar 

  5. Soylu, A., Skjæveland, M., Giese, M., Horrocks, I., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D.: A Preliminary Approach on Ontology-based Visual Query Formulation for Big Data. In: Garoufallou, E., Greenberg, J. (eds.) MTSR 2013. CCIS, vol. 390, pp. 201–212. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Siau, K.L., Chan, H.C., Wei, K.K.: Effects of query complexity and learning on novice user query performance with conceptual and logical database interfaces. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans 34(2), 276–281 (2004)

    Article  Google Scholar 

  7. Spanos, D.E., Stavrou, P., Mitrou, N.: Bringing relational databases into the Semantic Web: A survey. Semantic Web 3(2), 169–209 (2012)

    Google Scholar 

  8. Kogalovsky, M.R.: Ontology-Based Data Access Systems. Programming and Computer Software 38(4), 167–182 (2012)

    Article  MathSciNet  Google Scholar 

  9. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visualization methods - A survey. ACM Computing Surveys 39(4), 10:1–10:43 (2007)

    Google Scholar 

  10. Grau, B.C., Giese, M., Horrocks, I., Hubauer, T., Jimenez-Ruiz, E., Kharlamov, E., Schmidt, M., Soylu, A., Zheleznyakov, D.: Towards Query Formulation and Query-Driven Ontology Extensions in OBDA Systems. In: Proceedings of the 10th OWL: Experiences and Directions Workshop (OWLED 2013). CEUR Workshop Proceedings, vol. 1080. CEUR-WS.org (2013)

    Google Scholar 

  11. Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.): Adaptive Web 2007. LNCS, vol. 4321. Springer, Heidelberg (2007)

    Google Scholar 

  12. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation, W3C (March 2013)

    Google Scholar 

  13. Ter Hofstede, A.H.M., Proper, H.A., Van Der Weide, T.P.: Query formulation as an information retrieval problem. Computer Journal 39(4), 255–274 (1996)

    Article  Google Scholar 

  14. Tunkelang, D., Marchionini, G.: Faceted Search. Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan and Claypool Publishers (2009)

    Google Scholar 

  15. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. Journal of Artificial Intelligence Research 36(1), 165–228 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology Language Profiles. W3C Recommendation, W3C (October 2009)

    Google Scholar 

  17. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: The Next Step for OWL. Web Semantics: Science, Services and Agents on the World Wide Web 6(4), 309–322 (2008)

    Article  Google Scholar 

  18. Ray, S.S.: Subgraphs, Paths, and Connected Graphs. In: Graph Theory with Algorithms and its Applications. Springer India (2013)

    Google Scholar 

  19. Dividino, R., Groner, G.: Which of the following SPARQL Queries are Similar? Why? In: Proceedings of the 1st International Workshop on Linked Data for Information Extraction (LD4IE 2013). CEUR Workshop Proceedings, vol. 1057. CEUR-WS.org (2013)

    Google Scholar 

  20. Huang, H., Liu, C., Zhou, X.: Computing Relaxed Answers on RDF Databases. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 163–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Catarci, T., Dongilli, P., Di Mascio, T., Franconi, E., Santucci, G., Tessaris, S.: An ontology based visual tool for query formulation support. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004). Frontiers in Artificial Intelligence and Applications, vol. 110, pp. 308–312. IOS Press (2004)

    Google Scholar 

  22. Kapetanios, E., Baer, D., Groenewoud, P.: Simplifying syntactic and semantic parsing of NL-based queries in advanced application domains. Data & Knowledge Engineering 55(1), 38–58 (2005)

    Article  Google Scholar 

  23. Barzdins, G., Liepins, E., Veilande, M., Zviedris, M.: Ontology Enabled Graphical Database Query Tool for End-Users. In: Proceedings of the 8th International Baltic Conference on Databases and Information Systems (DB&IS 2008). Frontiers in Artificial Intelligence and Applications, vol. 187, pp. 105–116. IOS Press (2009)

    Google Scholar 

  24. Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: SnipSuggest: Context-aware Autocompletion for SQL. Proceedings of the VLDB Endowment 4(1), 22–33 (2010)

    Article  Google Scholar 

  25. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing RDF Graph Summary with Application to Assisted SPARQL Formulation. In: Proceedings of the 23rd International Workshop on Database and Expert Systems Applications (DEXA 2012), pp. 261–266. IEEE (2012)

    Google Scholar 

  26. Kramer, K., Dividino, R., Groner, G.: SPACE: SPARQL Index for Efficient Autocompletion. In: Proceedings of the ISWC 2013 Posters & Demonstrations Track (ISWC-PD 2013). CEUR Workshop Proceedings, vol. 1035. CEUR-WS.org (2013)

    Google Scholar 

  27. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE 2009), pp. 222–233. IEEE Computer Society (2009)

    Google Scholar 

  28. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on Semantic Web and Information Systems 5(2), 1–24 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Soylu, A., Giese, M., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., Horrocks, I. (2014). Towards Exploiting Query History for Adaptive Ontology-Based Visual Query Formulation. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, MA. (eds) Metadata and Semantics Research. MTSR 2014. Communications in Computer and Information Science, vol 478. Springer, Cham. https://doi.org/10.1007/978-3-319-13674-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13674-5_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13673-8

  • Online ISBN: 978-3-319-13674-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics