Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Some Extragradient Algorithms for Variational Inequalities

  • Chapter
  • First Online:
Advances in Variational and Hemivariational Inequalities

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 33))

Abstract

We present some extragradient algorithms for solving variational inequalities including classical variational inequality, multivalued variational inequality and general variational inequality. The global convergence of the proposed method is established, provided the mapping is continuous and pseudomonotone. Preliminary computational experience is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allevi, E., Gnudi, A., Konnov, I.V.: The proximal point method for nonmonotone variational inequalities. Math. Method Oper. Res. 63, 553–565 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, London (1984)

    MATH  Google Scholar 

  3. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  4. Auslender, A., Teboulle, M.: Lagrangian duality and related multiplier methods for variational inequality problems. SIAM J. Optim. 10, 1097–1115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bao, T.Q., Khanh, P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multivalued variational inequalities. In: Eberhard, A., Hadjisavvas, N., Luc, D.T. (eds.) Generalized Convexity, Generalized Monotonicity and Applications, pp. 113–129. Springer, New York (2005)

    Chapter  Google Scholar 

  6. Bnouhachem, A.: A self-adaptive method for solving general mixed variational inequalities. J. Math. Anal. Appl. 309, 136–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Extensions of Korpelevich,s extragradient method for solving the variational inequality problem in Euclidean space. Optimization 61, 1119–1132 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer, New York (2003)

    Google Scholar 

  10. Fang, C.J., He, Y.R.: A double projection algorithm for multi-valued variational inequalities and a unified framework of the method. Appl. Math. Comput. 217, 9543–9511 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fang, C.J., He, Y.R.: An extragradient method for generalized variational inequality. Pac. J. Optim. 9, 47–59 (2013)

    MATH  MathSciNet  Google Scholar 

  12. Fang, S.C., Peterson, E.L.: Generalized variational inequalities. J. Optim. Theory Appl. 38, 363–383 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fang, C.J., Chen, S.L., Yang, C.D.: An algorithm for solving multi-valued variational inequality. J. Inequal. Appl. 2013, 218 (2013)

    Google Scholar 

  14. Fang, C.J., Chen, S.L., Zheng, J.M.: A projection-type method for multivalued variational inequality. Abstr. Appl. Anal. 2013, 6 (2013). Article ID 836720

    Google Scholar 

  15. Fukushima, M.: The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem. Math. Program. 72, 1–15 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 271–310 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  17. He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185, 166–173 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iusem, A.N., Svaiter, B.F.: A variant of Korpelevich, method for variational inequalities with a new search strategy. Optimization 42, 309–321 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  20. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  21. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonom. i Mat. Metody 12, 747–756 (1976)

    MATH  MathSciNet  Google Scholar 

  22. Li, F.L., He, Y.R.: An algorithm for generalized variational inequality with pseudomonotone mapping. J. Comput. Appl. Math. 228, 212–218 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  24. Saigal, R.: Extension of the generalized complementarity problem. Math. Oper. Res. 1, 260–266 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Salmon, G., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving variational inequalities. SIAM J. Optim. 14, 869–893 (2003)

    Article  MathSciNet  Google Scholar 

  26. Santos, P.S.M., Scheimberg, S.: A projection algorithm for general variational inequalities with perturbed constraint set. Appl. Math. Comput. 181, 649–661 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sun, D.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 31, 123–140 (1996)

    Article  Google Scholar 

  29. Wang, Y.J., Xiu, N.H., Zhang, J.Z.: Modified extragradient method for variational inequalities and verification of solution existence. J. Optim. Theory Appl. 119, 167–183 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Xia, F.Q., Huang, N.J.: A projection-proximal point algorithm for solving generalized variational inequalities. J. Optim. Theory Appl. 150, 98–117 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xiu, N., Wang, Y., Zhang, X.: Modified fixed-point equations and related iterative methods for variational inequalities. Comput. Math. Appl. 47, 913–920 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H. (eds.) Contributions to Nonlinear Functional Analysis. Academic, New York (1971)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Natural Science Foundation Project of CQ CSTC of China, No. 2010BB9401, and the Scientific and Technological Research Program of Chongqing Municipal Education Commission of China, No. KJ110509.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjie Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fang, C., Chen, S. (2015). Some Extragradient Algorithms for Variational Inequalities. In: Han, W., Migórski, S., Sofonea, M. (eds) Advances in Variational and Hemivariational Inequalities. Advances in Mechanics and Mathematics, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-14490-0_6

Download citation

Publish with us

Policies and ethics