Abstract
Interest in video segmentation has grown significantly in recent years, resulting in a large body of works along with advances in both methods and datasets. Progress in video segmentation would enable new approaches to building 3D object models from video, understanding dynamic scenes, robot-object interaction and several other high-level vision tasks. The workshop brought together a broad and representative group of video segmentation researchers working on a wide range of topics. This paper summarizes the panel discussion at the workshop, which focused on three questions: (1) Why does video segmentation currently not meet the performance of image segmentation and what difficulties prevent it from leveraging motion? (2) Is video segmentation a stand-alone problem or should it rather be addressed in combination with recognition and reconstruction? (3) Which are the right video segmentation subtasks the field should focus on, and how can we measure progress?
Chapter PDF
Similar content being viewed by others
References
Badrinarayanan, V., Budvytis, I., Cipolla, R.: Mixture of trees probabilistic graphical model for video segmentation. IJCV (2013)
Banica, D., Agape, A., Ion, A., Sminchisescu, C.: Video object segmentation by salient segment chain composition. In: International Conference on Computer Vision, IPGM Workshop (2013)
Bergh, M.V.D., Roig, G., Boix, X., Manen, S., Gool, L.V.: Online video seeds for temporal window objectness. In: ICCV (2013)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012)
Chang, J., Wei, D., Fisher, J.W.: A video representation using temporal superpixels. In: CVPR (2013)
Dragon, R., Rosenhahn, B., Ostermann, J.: Multi-scale clustering of frame-to-frame correspondences for motion segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 445–458. Springer, Heidelberg (2012)
Fragkiadaki, K., Shi, J.: Video segmentation by tracing discontinuities in a trajectory embedding. In: CVPR (2012)
Galasso, F., Nagaraja, N.S., Cardenas, T.J., Brox, T., Schiele, B.: A unified video segmentation benchmark: Annotation, metrics and analysis. In: ICCV (2013)
Godec, M., Roth, P.M., Bischof, H.: Hough-based tracking of non-rigid objects. In: ICCV (2011)
Grundmann, M., Kwatra, V., Han, M., Essa, I.: Efficient hierarchical graph-based video segmentation. In: CVPR (2010)
Jain, A., Chatterjee, S., Vidal, R.: Coarse-to-fine semantic video segmentation using supervoxel trees. In: ICCV (2013)
Lee, J., Kwak, S., Han, B., Choi, S.: Online video segmentation by bayesian split-merge clustering. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part IV. LNCS, vol. 7575, pp. 856–869. Springer, Heidelberg (2012)
Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)
Levinshtein, A., Sminchisescu, C., Dickinson, S.: Spatiotemporal closure. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 369–382. Springer, Heidelberg (2011)
Lezama, J., Alahari, K., Sivic, J., Laptev, I.: Track to the future: Spatio-temporal video segmentation with long-range motion cues. In: CVPR (2011)
Li, F., Kim, T., Humayun, A., Tsai, D., Rehg, J.M.: Video segmentation by tracking many figure-ground segments. In: ICCV (2013)
Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: CVPR (2012)
Maire, M., Yu, S.X.: Progressive multigrid eigensolvers for multiscale spectral segmentation. In: ICCV (2013)
Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. PAMI (2014)
Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)
Palou, G., Salembier, P.: Hierarchical video representation with trajectory binary partition tree. In: CVPR (2013)
Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)
Reso, M., Jachalsky, J., Rosenhahn, B., Ostermann, J.: Temporally consistent superpixels. In: ICCV (2013)
Sundaram, N., Keutzer, K.: Long term video segmentation through pixel level spectral clustering on gpus. In: ICCV Workshops (2011)
Tang, K., Sukthankar, R., Yagnik, J., Fei-Fei, L.: Discriminative segment annotation in weakly labeled video. In: CVPR (2013)
Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: CVPR (2007)
Tsai, D., Flagg, M., Rehg, J.M.: Motion coherent tracking with multi-label mrf optimization. In: BMVC (2010)
Vazquez-Reina, A., Avidan, S., Pfister, H., Miller, E.: Multiple hypothesis video segmentation from superpixel flows. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 268–281. Springer, Heidelberg (2010)
Xu, C., Corso, J.J.: Evaluation of super-voxel methods for early video processing. In: CVPR (2012)
Xu, C., Xiong, C., Corso, J.J.: Streaming hierarchical video segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 626–639. Springer, Heidelberg (2012)
Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: CVPR (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Brox, T., Galasso, F., Li, F., Rehg, J.M., Schiele, B. (2015). First International Workshop on Video Segmentation - Panel Discussion. In: Agapito, L., Bronstein, M., Rother, C. (eds) Computer Vision - ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science(), vol 8928. Springer, Cham. https://doi.org/10.1007/978-3-319-16220-1_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-16220-1_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16219-5
Online ISBN: 978-3-319-16220-1
eBook Packages: Computer ScienceComputer Science (R0)