Abstract
We propose a novel interest point detector stemming from the intuition that image patches which are highly dissimilar over a relatively large extent of their surroundings hold the property of being repeatable and distinctive. This concept of contextual self-dissimilarity reverses the key paradigm of recent successful techniques such as the Local Self-Similarity descriptor and the Non-Local Means filter, which build upon the presence of similar - rather than dissimilar - patches. Moreover, our approach extends to contextual information the local self-dissimilarity notion embedded in established detectors of corner-like interest points, thereby achieving enhanced repeatability, distinctiveness and localization accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Interest point detection is run at multiple scales as described in Sect. 3.
- 2.
- 3.
References
Moravec, H.: Towards automatic visual obstacle avoidance. In: Proceedings of the International Joint Conference on Artificial Intelligence (1977)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the Alvey Vision Conference, pp. 147–151 (1988)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comput. Vis. 60, 63–86 (2004)
Shechtman, E., Irani, M.: Matching local self-similarities across images and videos. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2007) (2007)
Huang, J., You, S., Zhao, J.: Multimodal image matching using self similarity. In: Proceedings of the Workshop on Applied Imagery Pattern Recognition (AIPR) (2011)
Maver, J.: Self-similarity and points of interest. Trans. Pattern Anal. Mach. Intell. (PAMI) 32, 1211–1226 (2010)
Buades, A., Coll, B., Morel, J.: A review of image denoising methods, with a new one. Multiscale Model. Simul. 4, 490–530 (2006)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Tran. Image Process. 16, 1395–1411 (2007)
Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vis. 45, 83–105 (2000)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference, BMVC 2002, vol. 1, pp. 384–393 (2002)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)
Goferman, S., Zelnik-Manor, L., Tal, A.: Context-aware saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2010) (2010)
Borji, A., Itti, L.: Exploiting local and global patch rarities for saliency detection. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR 2012) (2012)
Mc Donnel, M.: Box-filtering techniques. Comput. Graph. Image Process. 17, 65–70 (1981)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)
Salti, S., Lanza, A., Stefano, L.D.: Keypoints from symmetries by wave propagation. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition (2013)
Aanæs, H., Dahl, A.L.: Steenstrup Pedersen, K.: Interesting interest points. Int. J. Comput. Vis. 97, 18–35 (2012)
Hel-Or, Y., Hel-Or, H., David, E.: Fast template matching in non-linear tone-mapped images. In: Proceedings of the International Conference on Computer Vision (ICCV) (2011)
Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized PatchMatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tombari, F., Di Stefano, L. (2015). Interest Points via Maximal Self-Dissimilarities. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_39
Download citation
DOI: https://doi.org/10.1007/978-3-319-16808-1_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-16807-4
Online ISBN: 978-3-319-16808-1
eBook Packages: Computer ScienceComputer Science (R0)