Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Range Minimum Query Indexes in Higher Dimensions

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9133))

Included in the following conference series:

  • 896 Accesses

Abstract

Range minimum queries (RMQs) are essential in many algorithmic procedures. The problem is to prepare a data structure on an array to allow for fast subsequent queries that find the minimum within a range in the array. We study the problem of designing indexing RMQ data structures which only require sub-linear space and access to the input array while querying. The RMQ problem in one-dimensional arrays is well understood with known indexing data structures achieving optimal space and query time. The two-dimensional indexing RMQ data structures have received the attention of researchers recently. There are also several solutions for the RMQ problem in higher dimensions. Yuan and Atallah [SODA’10] designed a brilliant data structure of size \(O(N)\) which supports RMQs in a multi-dimensional array of size \(N\) in constant time for a constant number of dimensions. In this paper we consider the problem of designing indexing data structures for RMQs in higher dimensions. We design a data structure of size \(O(N)\) bits that supports RMQs in constant time for a constant number of dimensions. We also show how to obtain trade-offs between the space of indexing data structures and their query time.

J. Iacono—Research supported by NSF grant CCF-1018370 and BSF grant 2010437.

G.M. Landau—Research partially supported by the National Science Foundation Award 0904246, Israel Science Foundation grant 571/14, Grant No. 2008217 from the United States- Israel Binational Science Foundation (BSF) and DFG.

M. Lewenstein—Research supported by BSF grant 2010437, a Google Research Award and GIF grant 1147/2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting in three and higher dimensions. In: FOCS, pp. 149–158 (2009)

    Google Scholar 

  2. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.: Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two dimensional range minimum queries and fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Int. J. Comput. Geom. Appl. 1(1), 33–45 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM Press (1984)

    Google Scholar 

  10. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range maximum queries. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete Algorithms 5(1), 12–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: Charikar, M. (ed.) SODA, pp. 150–160. SIAM (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moshe Lewenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Davoodi, P., Iacono, J., Landau, G.M., Lewenstein, M. (2015). Range Minimum Query Indexes in Higher Dimensions. In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19929-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19928-3

  • Online ISBN: 978-3-319-19929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics