Abstract
Range minimum queries (RMQs) are essential in many algorithmic procedures. The problem is to prepare a data structure on an array to allow for fast subsequent queries that find the minimum within a range in the array. We study the problem of designing indexing RMQ data structures which only require sub-linear space and access to the input array while querying. The RMQ problem in one-dimensional arrays is well understood with known indexing data structures achieving optimal space and query time. The two-dimensional indexing RMQ data structures have received the attention of researchers recently. There are also several solutions for the RMQ problem in higher dimensions. Yuan and Atallah [SODA’10] designed a brilliant data structure of size \(O(N)\) which supports RMQs in a multi-dimensional array of size \(N\) in constant time for a constant number of dimensions. In this paper we consider the problem of designing indexing data structures for RMQs in higher dimensions. We design a data structure of size \(O(N)\) bits that supports RMQs in constant time for a constant number of dimensions. We also show how to obtain trade-offs between the space of indexing data structures and their query time.
J. Iacono—Research supported by NSF grant CCF-1018370 and BSF grant 2010437.
G.M. Landau—Research partially supported by the National Science Foundation Award 0904246, Israel Science Foundation grant 571/14, Grant No. 2008217 from the United States- Israel Binational Science Foundation (BSF) and DFG.
M. Lewenstein—Research supported by BSF grant 2010437, a Google Research Award and GIF grant 1147/2011.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting in three and higher dimensions. In: FOCS, pp. 149–158 (2009)
Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.: Range LCP. J. Comput. Syst. Sci. 80(7), 1245–1253 (2014)
Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)
Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two dimensional range minimum queries and fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)
Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. Algorithmica 63(4), 815–830 (2012)
Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line. Int. J. Comput. Geom. Appl. 1(1), 33–45 (1991)
Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)
Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)
Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pp. 135–143. ACM Press (1984)
Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range maximum queries. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)
Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)
Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete Algorithms 5(1), 12–22 (2007)
Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239 (1980)
Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: Charikar, M. (ed.) SODA, pp. 150–160. SIAM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Davoodi, P., Iacono, J., Landau, G.M., Lewenstein, M. (2015). Range Minimum Query Indexes in Higher Dimensions. In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-19929-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19928-3
Online ISBN: 978-3-319-19929-0
eBook Packages: Computer ScienceComputer Science (R0)