Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Progressive Blind Deconvolution

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Included in the following conference series:

  • 2778 Accesses

Abstract

We present a novel progressive framework for blind image restoration. Common blind restoration schemes first estimate the blur kernel, then employ non-blind deblurring. However, despite recent progress, the accuracy of PSF estimation is limited. Furthermore, the outcome of non-blind deblurring is highly sensitive to errors in the assumed PSF. Therefore, high quality blind deblurring has remained a major challenge. In this work, we combine state of the art regularizers for the image and the PSF, namely the Mumford & Shah piecewise-smooth image model and the sparse PSF prior. Previous works that used Mumford & Shah image regularization were either limited to non-blind deblurring or semi-blind deblurring assuming a parametric kernel known up to an unknown parameter. We suggest an iterative progressive restoration scheme, in which the imperfectly deblurred output of the current iteration is fed back as input to the next iteration. The kernel representing the residual blur is then estimated, and used to drive the non-blind restoration component, leading to finer deblurring. Experimental results demonstrate rapid convergence, and excellent performance on a wide variety of blurred images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. SIGGRAPH 25, 787–794 (2006)

    Article  Google Scholar 

  3. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Communications on Pure and Applied Mathematics 43, 999–1036 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bar, L., Sochen, N.A., Kiryati, N.: Variational pairing of image segmentation and blind restoration. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 166–177. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Zheng, H., Hellwich, O.: Extended mumford-shah regularization in bayesian estimation for blind image deconvolution and segmentation. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 144–158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: SIGGRAPH (2008)

    Google Scholar 

  7. Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via Mumford-Shah regularization. IEEE Transactions on Image Processing 15, 483–493 (2006)

    Article  Google Scholar 

  8. Zhu, X., Milanfar, P.: Stabilizing and deblurring atmospheric turbulence. In: ICCP (2011)

    Google Scholar 

  9. Gal, R., Kiryati, N., Sochen, N.: Progress in the restoration of image sequences degraded by atmospheric turbulence. Pattern Recognition Letters 48, 8–14 (2014)

    Article  Google Scholar 

  10. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process 7, 813–824 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Zhou, Y., Komodakis, N.: A MAP-estimation framework for blind deblurring using high-level edge priors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 142–157. Springer, Heidelberg (2014)

    Google Scholar 

  12. Mahpod, S., Yitzhaky, Y.: Compression of turbulence-affected video signals SPIE, 7444 (2009)

    Google Scholar 

  13. Oreifej, O., Li, X., Shah, M.: Simultaneous video stabilization and moving object detection in turbulence. IEEE Trans. PAMI. 35, 450–462 (2013)

    Article  Google Scholar 

  14. Mumford, D., Shah, S.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure and Appl. Math. 42, 577–682 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Wiener, N.: Extrapolation, interpolation, and smoothing of stationary time series. MIT Press (1964)

    Google Scholar 

  16. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part III. LNCS, vol. 8691, pp. 783–798. Springer, Heidelberg (2014)

    Google Scholar 

  17. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)

    Google Scholar 

  18. Gildenblat, J.: Fast GPU implementation of Mumford-Shah regularization Semi-blind image restoration. Unpublished M.Sc. project report, School of Electrical Engineering. Tel Aviv University (2012)

    Google Scholar 

  19. You, Y., Kaveh, M.: A Regularization Approach to Joint Blur Identification and Image Restoration. IEEE Trans. Image Processing 5, 416–428 (1996)

    Article  Google Scholar 

  20. Chan, T., Wong, C.: Total Variation Blind Deconvolution. IEEE Trans. Image Processing 7, 370–375 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Hanocka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hanocka, R., Kiryati, N. (2015). Progressive Blind Deconvolution. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics