Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fast Re-ranking of Visual Search Results by Example Selection

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

  • 3134 Accesses

Abstract

In this paper we present a simple, novel method to use state-of-the-art image concept detectors and publicly available image search engines to retrieve images for semantically more complex queries from local databases without re-indexing of the database. Our low-key, data-driven method for associative recognition of unknown, or more elaborate, concepts in images allows user selection of visual examples to tailor query results to the typical preferences of the user. The method is compared with a baseline approach using ConceptNet-based semantic expansion of the query phrase to known concepts, as set by the concepts of the image concept detectors. Using the output of the image concept detector as index for all images in the local image database, a quick nearest-neighbor matching scheme is presented that can match queries swiftly via concept output vectors. We show preliminary results for a number of query phrases followed by a general discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. de Boer, M.H.T., Daniele, L., Brandt, P., Sappelli, M.: Applying semantic reasoning in image retrieval. In: ALLDATA 2015, The First International Conference on Big Data, Small Data, Linked Data and Open Data, pp. 69–74. IARIA (2015)

    Google Scholar 

  2. Bouma, H., Eendebak, P.T., Schutte, K., Azzopardi, G., Burghouts, G.J.: Incremental concept learning with few training examples and hierarchical classification. In: Proc. SPIE, vol. 9652 (2015)

    Google Scholar 

  3. Chatfield, K., Zisserman, A.: VISOR: towards on-the-fly large-scale object category retrieval. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 432–446. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Chen, X., Shrivastava, A., Gupta, A.: Neil: Extracting visual knowledge from web data. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1409–1416. IEEE (2013)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  6. Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from google’s image search. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2, pp. 1816–1823. IEEE (2005)

    Google Scholar 

  7. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint 1408.5093 (2014)

  8. Li, L.J., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. International Journal of Computer Vision 88(2), 147–168 (2010)

    Article  Google Scholar 

  9. Muja, M., Lowe, D.G.: Flann, fast library for approximate nearest neighbors (2009)

    Google Scholar 

  10. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge (2014)

    Google Scholar 

  11. Schutte, K., Bouma, H., Schavemaker, J., Daniele, L., Sappelli, M., Koot, G., Eendebak, P., Azzopardi, G., Spitters, M., de Boer, M., Brandt, P.: Interactive detection of incrementally learned concepts in images with ranking and semantic query interpretation. In: Proc. of 13th International Workshop on Content-Based Multimedia Indexing (CBMI) (2015)

    Google Scholar 

  12. Shi, Z., Yang, Y., Hospedales, T.M., Xiang, T.: Weakly supervised learning of objects, attributes and their associations. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 472–487. Springer, Heidelberg (2014)

    Google Scholar 

  13. Snoek, C.G.M., Worring, M., Koelma, D.C., Arnold, W.M., Smeulders, M.: A learned lexicon-driven paradigm for interactive video retrieval. IEEE Transactions on Multimedia 9(2) (2007)

    Google Scholar 

  14. Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5. In: LREC, pp. 3679–3686 (2012)

    Google Scholar 

  15. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: A large data set for nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  16. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image caption generator. CoRR abs/1411.4555 (2014). http://arxiv.org/abs/1411.4555

  17. Wang, X.J., Zhang, L., Jing, F., Ma, W.Y.: Annosearch: Image auto-annotation by search. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1483–1490. IEEE (2006)

    Google Scholar 

  18. Zhang, R., Zhang, Z., Li, M., Ma, W.Y., Zhang, H.J.: A probabilistic semantic model for image annotation and multimodal image retrieval. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 846–851. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Schavemaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Schavemaker, J., Spitters, M., Koot, G., de Boer, M. (2015). Fast Re-ranking of Visual Search Results by Example Selection. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics