Abstract
In this article we present a methodology for the automatic classification of sleep stages. The methodology relies on short-time analysis with time and frequency domain features followed by unsupervised feature subspace clustering. For each cluster of the feature space a different classification setup is adopted thus fine-tuning the classification algorithm to the specifics of the corresponding feature subspace area. The experimental results showed that the proposed methodology achieved a sleep stage classification accuracy equal to 92.53%, which corresponds to an improvement of approximately 3% compared to the best performing single classifier without applying clustering of the feature space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hagiwara, H.: Estimation of sleep stage in the falling asleep period using a Lorenz plot of ECG RR intervals. In: Proc. of the 31st Annual International Conference of the IEEE EMBS, pp. 2510–2513 (2009)
Gunes, S., Polat, K., Yosunkaya, S.: Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting. Expert Systems with Applications 37, 7922–7928 (2010)
Polat, K., Yosunkaya, S., Gunes, S.: Comparison of different classifier algorithms on the automated detection of obstructive sleep apnea syndrome. J. of Medical Systems 32(3), 243–250 (2008)
Rechtschaffen, A., Kales, A.: A manual of standardized terminology, techniques and scoring system for sleep stages of human subject. US Government Printing Office, National Institute of Health Publication, Washington (1968)
Zhovna, I., Shallom, I.D.: Automatic detection and classification of sleep stages by multichannel EEG signal modeling. In: Proc. of the 30th IEEE EMBS Conference (2008)
Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Megalooikonomou, V.: Online seizure detection from EEG and ECG signals for monitoring of epileptic patients. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS, vol. 8445, pp. 442–447. Springer, Heidelberg (2014)
Chiu, C.-C., Hai, B.H., Yeh, S.-J.: Sleep stages recognition based on combined artificial neural network and fuzzy system using wavelet transform features. In: Toi, V.V., Toan, N.B., Dang Khoa, T.Q., Lien Phuong, T.H. (eds.) 4th International Conference on Biomedical Engineering in Vietnam. IFMBE Proceedings, vol. 40, pp. 72–76. Springer, Heidelberg (2013)
Ebrahimi, F., Mikaeili, M., Estrada, E., Nazeran, H.: Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients. In: Proc. of the 30th IEEE EMBS Conference (2008)
Yu, S., Chen, X., Wang, B., Wang, X.: Automatic sleep stage classification based on ECG and EEG features for day time short nap evaluation. In: Proc. of the 10th World Congress on Intelligent Control and Automation (2012)
Zoubek, L., Charbonnier, S., Lesecq, S., Buguet, A., Chapotot, F.: Feature selection for sleep/wake stages classification using data driven methods. Biomedical Signal Processing and Control 2, 171–179 (2007)
Zhovna, I., Shallom, I.: Multichannel Analysis of EEG Signal Applied to Sleep Stage Classification. Recent Advances in Biomedical Engineering (2009). ISBN: 978-953-307-004-9
Kerkeni, N., Alexandre, F., Bedoui, M.H., Bougrain, L., Dogui, M.: Automatic classifcation of sleep stages on a EEG signal by artificial neural networks. In: Proc. of the 5th WSEAS International Conference on Signal, Speech and Image Processing, WSEAS SSIP 2005 (2005)
Aboalayon, K.A.I., Ocbagabir, H.T., Faezipour, M.: Efficient sleep stage classification based on EEG signals. In: Proc. of the IEEE Systems, Applications and Technology Conference, LISAT (2014)
Acharya, U.R., Chua, E.C., Chua, K.C., Min, L.C., Tamura, T.: Analysis and automatic identification of sleep stages using higher order spectra. Int. J. Neural Syst. 20(6), 509–521 (2010)
Estevez, P.A., Held, C.M., Holzmann, C.A., Perez, C.A., Perez, J.P., Heiss, J., Garrido, M., Peirano, P.: Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Med Biol Eng Comput. 40(1), 105–113 (2002)
Noviyanto, A., Arymurthy, A.M.: Sleep stages classification based on temporal pattern recogniton in neural network approach. In: Proc. of IEEE World Congress on Computational Intelligence (WCCI) (2012)
Langkvist, M., Karlsson, L., Loutfi, A.: Sleep stage classification using unsupervised feature learning. Advances in Artificial Neural Systems (2012)
Kemp, B., Zwinderman, A.H., Tuk, B., Kamphuisen, H.A.C., Oberye, J.J.L.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering 47(9), 1185–1194 (2000)
Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23) (2000)
Mporas, I., Tsirka, V., Zacharaki, E.I., Koutroumanidis, M., Richardson, M., Megalooikonomou, V.: Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients. Expert Systems with Applications 42(6), 3227–3233 (2015)
Witten, I.H., Frank, E.: Data mining: practical machine learning tools and techniques, 2nd edn. Morgan-Kaufman Series of Data Management Systems. Elsevier, San Francisco (2005)
Burges, C.: A tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)
Silber, M.H., Ancoli-Israel, S., Bonnet, M.H., Chokroverty, S., Grigg-Damberger, M.M., et al.: The visual scoring of sleep in adults. J. of Clinical Sleep Medicine 3(2), 121–131 (2007)
Jasper, H.H.: The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology 371–375 (1958)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Mporas, I., Efstathiou, A., Megalooikonomou, V. (2015). Sleep Stages Classification from Electroencephalographic Signals Based on Unsupervised Feature Space Clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-23344-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23343-7
Online ISBN: 978-3-319-23344-4
eBook Packages: Computer ScienceComputer Science (R0)