Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Practical Compact Dynamic Tries

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9309))

Included in the following conference series:

  • International Symposium on String Processing and Information Retrieval

Abstract

We consider the problem of implementing a dynamic trie with an emphasis on good practical performance. For a trie with n nodes with an alphabet of size \(\sigma \), the information-theoretic lower bound is \(n \log \sigma + O(n)\) bits. The Bonsai data structure [1] supports trie operations in O(1) expected time (based on assumptions about the behaviour of hash functions). While its practical speed performance is excellent, its space usage of \((1+\epsilon ) n (\log \sigma + O(\log \log n))\) bits, where \(\epsilon \) is any constant \(> 0\), is not asymptotically optimal. We propose an alternative, m-Bonsai, that uses \((1 + \epsilon ) n (\log \sigma + O(1))\) bits in expectation, and supports operations in O(1) expected time (again based on assumptions about the behaviour of hash functions). We give a heuristic implementation of m-Bonsai which uses considerably less memory and is slightly faster than the original Bonsai.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: a compact representation of trees. Softw., Pract. Exper. 23(3), 277–291 (1993)

    Article  Google Scholar 

  2. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bentley, J., Sedgewick, B.: Ternary search trees (1998). http://www.drdobbs.com/database/ternary-search-trees/184410528

  4. Nilsson, S., Tikkanen, M.: An experimental study of compression methods for dynamic tries. Algorithmica 33(1), 19–33 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jacobson, G.: Space-efficient static trees and graphs. In: Proc. 30th Annual Symposium on Foundations of Computer Science, pp. 549–554. IEEE Computer Society (1989)

    Google Scholar 

  6. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM Transactions on Algorithms 3(4) (2007)

    Google Scholar 

  7. Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode various families of trees. Algorithmica 68(1), 16–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly. In: Kosaraju, S.R. (ed.) Proc. 12th Annual Symposium on Discrete Algorithms, pp. 529–536. ACM/SIAM (2001)

    Google Scholar 

  10. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 357–368. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Arroyuelo, D., Davoodi, P., Satti, S.: Succinct dynamic cardinal trees. Algorithmica, 1–36 (2015) (online first)

    Google Scholar 

  12. Jansson, J., Sadakane, K., Sung, W.: Linked dynamic tries with applications to lz-compression in sublinear time and space. Algorithmica 71(4), 969–988 (2015)

    Article  MathSciNet  Google Scholar 

  13. Takagi, T., Uemura, T., Inenaga, S., Sadakane, K., Arimura, H.:Applications of succinct dynamic compact tries to some stringproblems (presented at WAAC 2013). http://www-ikn.ist.hokudai.ac.jp/~arim/papers/waac13takagi.pdf

  14. Grossi, R., Ottaviano, G.: The wavelet trie: maintaining an indexed sequence of strings in compressed space. In: PODS, pp. 203–214 (2012)

    Google Scholar 

  15. Patrascu, M.: Succincter. In: 49th Annual IEEE Symp. Foundations of Computer Science, pp. 305–313. IEEE Computer Society (2008)

    Google Scholar 

  16. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, 2nd edn. Addison Wesley Longman (1998)

    Google Scholar 

  17. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst case access time. J. ACM 31(3), 538–544 (1984)

    Article  MATH  Google Scholar 

  19. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yoshinaga, N., Kitsuregawa, M.: A self-adaptive classifier for efficient text-stream processing. In: COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, August 23–29, 2014, Dublin, Ireland, pp. 1091–1102 (2014)

    Google Scholar 

  21. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 326–337. Springer, Heidelberg (2014)

    Google Scholar 

  22. Goethals, B.: Frequent itemset mining implementations repository. http://fimi.ua.ac.be/

  23. Schlegel, B., Gemulla, R., Lehner, W.: Memory-efficient frequent-itemset mining. In: Proceedings of the 14th International Conference on Extending Database Technology, EDBT 2011, Uppsala, Sweden, March 21–24, 2011, pp. 461–472 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Poyias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Poyias, A., Raman, R. (2015). Improved Practical Compact Dynamic Tries. In: Iliopoulos, C., Puglisi, S., Yilmaz, E. (eds) String Processing and Information Retrieval. SPIRE 2015. Lecture Notes in Computer Science(), vol 9309. Springer, Cham. https://doi.org/10.1007/978-3-319-23826-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23826-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23825-8

  • Online ISBN: 978-3-319-23826-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics