Abstract
In this paper, a method based on pre-defined patterns, which rewrites natural language queries into a multi-layer, flexible, scalable and object-oriented query language, is presented. The method has been conceived to assist physicians in their search for clinical information in an Electronic Health Records system. Indeed, the query language of the system being difficult to handle for physicians, this method allows querying using natural language vs. using dedicated object-oriented query language. The information extraction method that has been developed can be seen as a named entity recognition system based on regular expressions that tags pieces of the query. The patterns are constructed recursively from the initial natural language query and from atomic patterns that correspond to the entities, the relationships and the constraints of the underlying model representing Electronic Health Records. Further evaluation is needed, but the preliminary results obtained by testing a set of natural language queries are very encouraging.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Jha, A.K., DesRoches, C.M., Kralovec, P.D., Joshi, M.S.: A progress report on electronic health records in US hospital. Health Aff. 29(10), 1951–1957 (2010)
Schuemie, M.J., Sen, E., Jong, G.W., Van Soest, E.M., Sturkenboom, M.C., Kors, J.A.: Automating classification of free-text electronic health records for epidemiological studies. Pharmacoepidemiol. Drug Saf. 21(6), 651–658 (2012)
Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query languages and interfaces to semantic web knowledge bases. Web Semant. Sci. Serv. Agents World Wide Web 8(4), 377–393 (2010)
Pradel, C., Haemmerlé, O., Hernandez, N.: Natural Language Query Interpretation into SPARQL Using Patterns. In: Proceedings of the 4th International Workshop on Consuming Linked Data (2013)
Pradel, C., Haemmerlé, O., Hernandez, N.: Swip: A Natural Language to SPARQL Interface Implemented with SPARQL. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014. LNCS, vol. 8577, pp. 260–274. Springer, Heidelberg (2014)
Freitas, A., de Faria, F.F., O’Riain, S., Curry, E.: Answering natural language queries over linked data graphs: a distributional semantics approach. In: Proceedings of the 36th International ACM SIGIR Conference 2013, pp. 1107–1108 (2013)
Tannier, X., Geva, S.: XML retrieval with a natural language interface. In: proceedings of the 12th Conference on String Processing and Information Retrieval, pp. 29–40 (2005)
Lelong, R., Merabti, T., Grosjean, J., et al.: Moteur de recherche sémantique au sein du dossier du patient informatisé : langage de requêtes spécifique. In: Proceeding of 15èmes Journées Francophones d’Informatique Médicale, CEUR Workshop Proceedings, vol. 1323 (2014)
DeJong, G.: An overview of the FRUMP system. Strat. Nat. Lang. Process. 113, 149–176 (1982)
Zweigenbaum, P., Lavergne, T., Grabar, N., Hamon, T., Rosset, S., Grouin, C.: Combining an expert-based medical entity recognizer to a machine-learning system: methods and a case study. Biomed. Inf. Insights 6(Suppl. 1), 51–62 (2013)
Hayes, P.J., Carbonell, J.: Natural Language Understanding. In: Encyclopedia of Artificial Intelligence, pp. 660–677 (1987)
Tange, H.J., de Hasman, P.F., Schouten, H.C.: Medical narratives in electronic medical records. Int. J. Med. Informatics 46, 7–29 (1997)
Taira, R.K., Soderland, S.G.: A statistical natural language processor for medical reports. In: Proceedings of the American Medical Informatics Association Symposium, pp. 970–974 (1999)
Zeng, Q.T., Goryachev, S., Weiss, S., Sordo, M., Murphy, S.N., Ross, L.: Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med. Inf. Decis. Making 6, 30 (2006)
Voorham, J., Denig, P.: Computerized extraction of information on the quality of diabetes care from free text in electronic patient records of general practitioners. J. Am. Med. Inf. Assoc. 14, 349–354 (2007)
Turchin, A., Kolatkar, N.S., Grant, R.W., Makhni, M.L., Pendergrass, E.C., Einbinder, J.S.: Using regular expressions to abstract blood pressure and treatment intensification information from the text of physician notes. J. Am. Med. Inform. Assoc. 13, 691–695 (2006)
Pakhomov, S., Buntrock, J., Duffy, P.: High throughput modularized NLP system for clinical text. In: Proceedings of the Association for Computational Linguistics, pp. 25–28 (2005)
Xu, H., Stenner, S., Doan, S., et al.: MedEx: a medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. 17, 19–24 (2010)
Dillahunt-Aspillaga, C., Finch, D., Massengale, J., Kretzmer, T., Luther, S.L., McCart, J.A.: Using information from the electronic health record to improve measurement of unemployment in service members and veterans with mtbi and post-deployment stress. PLoS One 9, e115873 (2014)
Chebil, W., Soualmia, L.F., Nazih, M.O., Darmoni, S.J.: Indexing biomedical documents with a possibilistic network. J. Assoc. Inf. Sci. Technol. (2015, in press)
Dupuch, M., Segond, F., Bittar, A., Dini, L., Soualmia, L.F., Darmoni, S.J., Gicquel, Q., Metzger, M.H.: Separate the grain from the chaff: make the best use of language and knowledge technologies to model textual medical data extracted from electronic health records. In: proceedings of the 6th Language & Technology Conference (2013)
Grosjean, J., Merabti, T., Dahamna, B., Kergourlay, I., Thirion, B., Soualmia, L.F., Darmoni, S.J.: Health multi-terminology portal: a semantics added-value for patient safety. Stud. Health Technol. Inf. 166, 129–138 (2011)
Thiessard, F., Mougin, F., Diallo, G., et al.: RAVEL: retrieval and visualization in electronic health records. Stud. Health Technol. Inf. 180, 194–198 (2012)
Bui, D.D.A., Zeng-Treitler, Q.: Learning regular expressions for clinical text classification. J. Am. Med. Inform. Assoc. 21, 850–857 (2014)
Edinger, T., Cohen, A.M., Bedrick, S., Ambert, K., Hersh, W.: Barriers to retrieving patient information from electronic health record data: failure analysis from the TREC Medical Records Track. In: proceedings of the American Medical Informatics Aassociation Symposium, pp. 180–188 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Soualmia, L.F., Lelong, R., Dahamna, B., Darmoni, S.J. (2015). Rewriting Natural Language Queries Using Patterns. In: Müller, H., Jimenez del Toro, O., Hanbury, A., Langs, G., Foncubierta Rodriguez, A. (eds) Multimodal Retrieval in the Medical Domain. MRDM 2015. Lecture Notes in Computer Science(), vol 9059. Springer, Cham. https://doi.org/10.1007/978-3-319-24471-6_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-24471-6_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24470-9
Online ISBN: 978-3-319-24471-6
eBook Packages: Computer ScienceComputer Science (R0)