Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rewriting Natural Language Queries Using Patterns

  • Conference paper
  • First Online:
Multimodal Retrieval in the Medical Domain (MRDM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9059))

Included in the following conference series:

  • 457 Accesses

Abstract

In this paper, a method based on pre-defined patterns, which rewrites natural language queries into a multi-layer, flexible, scalable and object-oriented query language, is presented. The method has been conceived to assist physicians in their search for clinical information in an Electronic Health Records system. Indeed, the query language of the system being difficult to handle for physicians, this method allows querying using natural language vs. using dedicated object-oriented query language. The information extraction method that has been developed can be seen as a named entity recognition system based on regular expressions that tags pieces of the query. The patterns are constructed recursively from the initial natural language query and from atomic patterns that correspond to the entities, the relationships and the constraints of the underlying model representing Electronic Health Records. Further evaluation is needed, but the preliminary results obtained by testing a set of natural language queries are very encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jha, A.K., DesRoches, C.M., Kralovec, P.D., Joshi, M.S.: A progress report on electronic health records in US hospital. Health Aff. 29(10), 1951–1957 (2010)

    Article  Google Scholar 

  2. Schuemie, M.J., Sen, E., Jong, G.W., Van Soest, E.M., Sturkenboom, M.C., Kors, J.A.: Automating classification of free-text electronic health records for epidemiological studies. Pharmacoepidemiol. Drug Saf. 21(6), 651–658 (2012)

    Article  Google Scholar 

  3. Kaufmann, E., Bernstein, A.: Evaluating the usability of natural language query languages and interfaces to semantic web knowledge bases. Web Semant. Sci. Serv. Agents World Wide Web 8(4), 377–393 (2010)

    Article  Google Scholar 

  4. Pradel, C., Haemmerlé, O., Hernandez, N.: Natural Language Query Interpretation into SPARQL Using Patterns. In: Proceedings of the 4th International Workshop on Consuming Linked Data (2013)

    Google Scholar 

  5. Pradel, C., Haemmerlé, O., Hernandez, N.: Swip: A Natural Language to SPARQL Interface Implemented with SPARQL. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) ICCS 2014. LNCS, vol. 8577, pp. 260–274. Springer, Heidelberg (2014)

    Google Scholar 

  6. Freitas, A., de Faria, F.F., O’Riain, S., Curry, E.: Answering natural language queries over linked data graphs: a distributional semantics approach. In: Proceedings of the 36th International ACM SIGIR Conference 2013, pp. 1107–1108 (2013)

    Google Scholar 

  7. Tannier, X., Geva, S.: XML retrieval with a natural language interface. In: proceedings of the 12th Conference on String Processing and Information Retrieval, pp. 29–40 (2005)

    Google Scholar 

  8. Lelong, R., Merabti, T., Grosjean, J., et al.: Moteur de recherche sémantique au sein du dossier du patient informatisé : langage de requêtes spécifique. In: Proceeding of 15èmes Journées Francophones d’Informatique Médicale, CEUR Workshop Proceedings, vol. 1323 (2014)

    Google Scholar 

  9. DeJong, G.: An overview of the FRUMP system. Strat. Nat. Lang. Process. 113, 149–176 (1982)

    Google Scholar 

  10. Zweigenbaum, P., Lavergne, T., Grabar, N., Hamon, T., Rosset, S., Grouin, C.: Combining an expert-based medical entity recognizer to a machine-learning system: methods and a case study. Biomed. Inf. Insights 6(Suppl. 1), 51–62 (2013)

    Article  Google Scholar 

  11. Hayes, P.J., Carbonell, J.: Natural Language Understanding. In: Encyclopedia of Artificial Intelligence, pp. 660–677 (1987)

    Google Scholar 

  12. Tange, H.J., de Hasman, P.F., Schouten, H.C.: Medical narratives in electronic medical records. Int. J. Med. Informatics 46, 7–29 (1997)

    Article  Google Scholar 

  13. Taira, R.K., Soderland, S.G.: A statistical natural language processor for medical reports. In: Proceedings of the American Medical Informatics Association Symposium, pp. 970–974 (1999)

    Google Scholar 

  14. Zeng, Q.T., Goryachev, S., Weiss, S., Sordo, M., Murphy, S.N., Ross, L.: Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med. Inf. Decis. Making 6, 30 (2006)

    Article  Google Scholar 

  15. Voorham, J., Denig, P.: Computerized extraction of information on the quality of diabetes care from free text in electronic patient records of general practitioners. J. Am. Med. Inf. Assoc. 14, 349–354 (2007)

    Article  Google Scholar 

  16. Turchin, A., Kolatkar, N.S., Grant, R.W., Makhni, M.L., Pendergrass, E.C., Einbinder, J.S.: Using regular expressions to abstract blood pressure and treatment intensification information from the text of physician notes. J. Am. Med. Inform. Assoc. 13, 691–695 (2006)

    Article  Google Scholar 

  17. Pakhomov, S., Buntrock, J., Duffy, P.: High throughput modularized NLP system for clinical text. In: Proceedings of the Association for Computational Linguistics, pp. 25–28 (2005)

    Google Scholar 

  18. Xu, H., Stenner, S., Doan, S., et al.: MedEx: a medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. 17, 19–24 (2010)

    Article  Google Scholar 

  19. Dillahunt-Aspillaga, C., Finch, D., Massengale, J., Kretzmer, T., Luther, S.L., McCart, J.A.: Using information from the electronic health record to improve measurement of unemployment in service members and veterans with mtbi and post-deployment stress. PLoS One 9, e115873 (2014)

    Article  Google Scholar 

  20. Chebil, W., Soualmia, L.F., Nazih, M.O., Darmoni, S.J.: Indexing biomedical documents with a possibilistic network. J. Assoc. Inf. Sci. Technol. (2015, in press)

    Google Scholar 

  21. Dupuch, M., Segond, F., Bittar, A., Dini, L., Soualmia, L.F., Darmoni, S.J., Gicquel, Q., Metzger, M.H.: Separate the grain from the chaff: make the best use of language and knowledge technologies to model textual medical data extracted from electronic health records. In: proceedings of the 6th Language & Technology Conference (2013)

    Google Scholar 

  22. Grosjean, J., Merabti, T., Dahamna, B., Kergourlay, I., Thirion, B., Soualmia, L.F., Darmoni, S.J.: Health multi-terminology portal: a semantics added-value for patient safety. Stud. Health Technol. Inf. 166, 129–138 (2011)

    Google Scholar 

  23. Thiessard, F., Mougin, F., Diallo, G., et al.: RAVEL: retrieval and visualization in electronic health records. Stud. Health Technol. Inf. 180, 194–198 (2012)

    Google Scholar 

  24. Bui, D.D.A., Zeng-Treitler, Q.: Learning regular expressions for clinical text classification. J. Am. Med. Inform. Assoc. 21, 850–857 (2014)

    Article  Google Scholar 

  25. Edinger, T., Cohen, A.M., Bedrick, S., Ambert, K., Hersh, W.: Barriers to retrieving patient information from electronic health record data: failure analysis from the TREC Medical Records Track. In: proceedings of the American Medical Informatics Aassociation Symposium, pp. 180–188 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina F. Soualmia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Soualmia, L.F., Lelong, R., Dahamna, B., Darmoni, S.J. (2015). Rewriting Natural Language Queries Using Patterns. In: Müller, H., Jimenez del Toro, O., Hanbury, A., Langs, G., Foncubierta Rodriguez, A. (eds) Multimodal Retrieval in the Medical Domain. MRDM 2015. Lecture Notes in Computer Science(), vol 9059. Springer, Cham. https://doi.org/10.1007/978-3-319-24471-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24471-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24470-9

  • Online ISBN: 978-3-319-24471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics