Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On Shape Recognition and Language

  • Conference paper
  • First Online:
Perspectives in Shape Analysis

Abstract

Shapes convey meaning. Language is efficient in expressing and structuring meaning. The main thesis of this chapter is that by integrating shape with linguistic information shape recognition can be improved in performance. It broadens the concept of shape to visual shapes that include both geometric and optical information and explores ways that additional linguistic information may help with shape recognition. Towards this goal, it briefly describes some shape categories which have the potential of better recognition via language, with emphasis on gestures and moving shapes of sign language, as well as on cross-modal relations between vision and language in videos. It also draws inspiration from psychological studies that explore connections between gestures and human languages. Afterwards, it focuses on the broad class of multimodal gestures that combine spatio-temporal visual shapes with audio information. In this area, an approach is reviewed that significantly improves multimodal gesture recognition by fusing 3D shape information from motion-position of gesturing hands/arms and spatio-temporal handshapes in color and depth visual channels with audio information in the form of acoustically recognized sequences of gesture words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In the PDTS system, D is a “hold” but for shorter duration than P. S is a “movement” without acceleration. T is more abrupt motion.

  2. 2.

    In the work of [38] the P1/P2 terms are not employed any more compared to [37], since [38] includes several other contributions, the discussion of which is beyond the scope of this chapter. Herein we keep the P1/P2 terms only for descriptive reasons.

  3. 3.

    The multimodal gesture recognition system in [38] is an extension of [37], where additional components are included such as voice and gesture activity detection and a gesture-loop grammar, which improve the recognition results.

References

  1. Agris, U., Zieren, J., Canzler, U., Bauer, B., Kraiss, K.F.: Recent developments in visual sign language recognition. Univ. Access Inf. Soc. 6, 323–362 (2008)

    Article  Google Scholar 

  2. Antonakos, E., Pitsikalis, V., Maragos, P.: Classification of extreme facial events in sign language videos. EURASIP J. Image Video Process. 2014, 14 (2014)

    Google Scholar 

  3. Arbib, M.A.: How the Brain Got Language: The Mirror System Hypothesis. Oxford University Press, New York (2012)

    Book  Google Scholar 

  4. Bayer, I., Silbermann, T.: A multi modal approach to gesture recognition from audio and video data. In: Proceedings of the ACM International Conference on Multimodal Interaction, Sydney, pp. 461–466 (2013)

    Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Bolt, R.A.: Put-that-there: voice and gesture at the graphics interface. ACM Comput. Graph. 14 (3), 262–270 (1980)

    Article  MathSciNet  Google Scholar 

  7. Bordier, C., Puja, F., Macaluso, E.: Sensory processing during viewing of cinematographic material: computational modeling and functional neuroimaging. NeuroImage 67, 213–226 (2013)

    Article  Google Scholar 

  8. Bowden, R., Windridge, D., Kadir, T., Zisserman, A., Brady, M.: A linguistic feature vector for the visual interpretation of sign language. In: Proceedings of the European Conference on Computer Vision (ECCV), Prague (2004)

    Google Scholar 

  9. Buehler, P., Everingham, M., Zisserman, A.: Learning sign language by watching TV (using weakly aligned subtitles). In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), Miami, pp. 2961–2968 (2009)

    Google Scholar 

  10. Chow, Y.-L., Schwartz, R.: The N-best algorithm: an efficient procedure for finding top N sentence hypotheses. In: HLT’89 Proceedings of the Workshop on Speech and Natural Language, Morristown, pp. 199–202 (1989)

    Google Scholar 

  11. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23 (6), 681–685 (2001)

    Article  Google Scholar 

  12. Cour, T., Sapp, B., Nagle, A., Taskar, B.: Talking pictures: temporal grouping and dialog-supervised person recognition. In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), San Francisco (2010)

    Google Scholar 

  13. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), San Diego, pp. 886–893 (2005)

    Google Scholar 

  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)

    MATH  Google Scholar 

  15. Emmorey, K.: Language, Cognition, and the Brain: Insights from Sign Language Research. Lawrence Erlbaum Associates, Mahwah (2002)

    Google Scholar 

  16. Escalera, S., Gonzàlez, J., Baró, X., Reyes, M., Guyon, I., Athitsos, V., Escalante, H., Sigal, L., Argyros, A., Sminchisescu, C., Bowden, R., Sclaroff, S.: ChaLearn multi-modal gesture recognition 2013: grand challenge and workshop summary. In: Proceedings of the ACM International Conference on Multimodal Interaction, Sydney, pp. 365–368 (2013)

    Google Scholar 

  17. Escalera, S., Gonzàlez, J., Baró, X., Reyes, M., Lopes, O., Guyon, I., Athistos, V., Escalante, H.J.: Multi-modal gesture recognition challenge 2013: dataset and results. In: Proceedings of the ACM International Conference on Multimodal Interaction, pp. 445–452 (2013)

    Google Scholar 

  18. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.A.: Describing objects by their attributes. In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), Miami (2009)

    Google Scholar 

  19. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), San Diego (2005)

    Google Scholar 

  20. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Springer Science & Business Media, Boston (1992)

    Book  MATH  Google Scholar 

  21. Glotin, H., Vergyr, D., Neti, C., Potamianos, G., Luettin, J.: Weighting schemes for audio-visual fusion in speech recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, pp. 173–176 (2001)

    Google Scholar 

  22. Jaimes, A., Sebe, N.: Multimodal human–computer interaction: a survey. Comput. Vis. Image Underst. 108 (1), 116–134 (2007)

    Article  Google Scholar 

  23. Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1997)

    Google Scholar 

  24. Johnson, R.E., Liddell, S.K.: A segmental framework for representing signs phonetically. Sign Lang. Stud. 11 (3), 408–463 (2011)

    Article  Google Scholar 

  25. Kendon, A.: Gesture: Visible Action as Utterance. Cambridge University Press, Cambridge/New York (2004)

    Google Scholar 

  26. Kopp, S., Bergmann, K.: Automatic and strategic alignment of co-verbal gestures in dialogue. In: Wachsmuth, I., de Ruiter, J., Kopp, S., Jaecks, P. (eds.) Alignment in Communication: Towards a New Theory of Communication, pp. 87–107. John Benjamins Publ. Co., Amsterdam (2013)

    Chapter  Google Scholar 

  27. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: Proceedings of the IEEE International Conference on Computer Vision & Pattern Recognition (CVPR), Anchorage (2008)

    Google Scholar 

  28. Liddell, S.K.: Grammar, Gesture and Meaning in American Sign Language. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  29. Maragos, P., Gros, P., Katsamanis, A., Papandreou, G.: Cross-modal integration for performance improving in multimedia: a review. In: Maragos, P., Potamianos, A., Gros, P. (eds.) Multimodal Processing and Interaction: Audio, Video, Text, pp. 3–48. Springer, New York (2008)

    Chapter  Google Scholar 

  30. McNeill, D.: Gesture: a psycholinguistic approach. In: The Encyclopedia of Language and Linguistics, pp. 1–15. Elsevier, Boston (2006)

    Google Scholar 

  31. McNeill, D.: Gesture-speech unity: phylogenesis, ontogenesis microgenesis. Lang. Interact. Acquis. 5 (2), 137–184 (2014)

    Article  Google Scholar 

  32. Ong, S., Ranganath, S.: Automatic sign language analysis: a survey and the future beyond lexical meaning. IEEE Trans. Pattern Anal. Mach. Intell. 27, 873–891 (2005)

    Article  Google Scholar 

  33. Ostendorf, M., Kannan, A., Austin, S., Kimball, O., Schwartz, R., Rohlicek, J.R.: Integration of diverse recognition methodologies through reevaluation of N-best sentence hypotheses. In: HLT’91 Proceedings of the Workshop on Speech and Natural Language, pp. 83–87 (1991)

    Google Scholar 

  34. Oviatt, S., Cohen, P.: Perceptual user interfaces: multimodal interfaces that process what comes naturally. Commun. ACM 43 (3), 45–53 (2000)

    Article  Google Scholar 

  35. Parikh, D., Grauman, K.: Relative attributes. In: Proceedings of the International Conference on Computer Vision (ICCV), Barcelona (2011)

    Google Scholar 

  36. Pastra, K.: COSMOROE: a cross-media relations framework for modelling multimedia dialectics. Multimed. Syst. 14, 299–323 (2008)

    Article  Google Scholar 

  37. Pavlakos, G., Theodorakis, S., Pitsikalis, V., Katsamanis, A., Maragos, P.: Kinect-based multimodal gesture recognition using a two-pass fusion scheme. In: Proceeding of the IEEE International Conference on Image Processing (ICIP), Paris, pp. 1495–1499 (2014)

    Google Scholar 

  38. Pitsikalis, V., Katsamanis, A., Theodorakis, S., Maragos, P.: Multimodal gesture recognition via multiple hypotheses rescoring. J. Mach. Learn. Res. 16, 255–284 (2015)

    MathSciNet  Google Scholar 

  39. Pitsikalis, V., Theodorakis, S., Vogler, C., Maragos, P.: Advances in phonetics-based sub-unit modeling for transcription alignment and sign language recognition. In: Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition Workshops, Colorado Springs (2011)

    Book  Google Scholar 

  40. Rabiner, L.R., Juang, B.H.: Fundamentals of Speech Recognition. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  41. Rose, R.C., Paul, D.B.: A hidden Markov model based keyword recognition system. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Albuquerque, pp. 129–132 (1990)

    Google Scholar 

  42. Searle, J.R.: Mind, Language, and Society: Philosophy in the Real World. Basic Books, New York (1999)

    Google Scholar 

  43. Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in images. In: Proceedings of the International Conference on Computer Vision (ICCV), Beijing, (2005)

    Google Scholar 

  44. Starner, T., Weaver, J., Pentland, A.: Real-time American sign language recognition using desk and wearable computer based video. IEEE Trans. Pattern Anal. Mach. Intell. 20 (12), 1371–1375 (1998)

    Article  Google Scholar 

  45. Theodorakis, S., Pitsikalis, V., Maragos, P.: Dynamic–static unsupervised sequentiality, statistical subunits and lexicon for sign language recognition. Image Vis. Comput. 32, 533–549 (2014)

    Article  Google Scholar 

  46. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press (2008)

    Google Scholar 

  47. Tomasello, M.: Origins of Human Communication. MIT Press, Cambridge (2008)

    Google Scholar 

  48. Vatakis, A., Spence, C.: Audiovisual synchrony perception for music, speech, and object actions. Brain Res. 1111, 134–142 (2006)

    Article  Google Scholar 

  49. Vogler, C., Metaxas, D.: A framework for recognizing the simultaneous aspects of American sign language. Comput. Vis. Image Underst. 81 (3), 358–384 (2001)

    Article  MATH  Google Scholar 

  50. Wilpon, J., Rabiner, L.R., Lee, C.H., Goldman, E.R.: Automatic recognition of keywords in unconstrained speech using hidden Markov models. IEEE Trans. Acoust. Speech Signal Process. 38 (11), 1870–1878 (1990)

    Article  Google Scholar 

  51. Wittgenstein, L.: Philosophical Investigations. (Translated by Anscombe, G.E.M., and Editors Hacker, P.M.S., Schulte, J., 4th edn.). Wiley-Blackwell Publ. (2009) (1953)

    Google Scholar 

  52. Wittgenstein, L.: The Big Typescript: TS 213 (Edited and translated by Luckhardt, C.G., Aue, M.E.). Blackwell Publication (2005)

    Google Scholar 

  53. Wu, J., Cheng, J., Zhao, C., Lu, H.: Fusing multi-modal features for gesture recognition. In: Proceedings of the ACM International Conference on Multimodal Interaction, Sydney, pp. 453–460 (2013)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Niki Efthymiou and Nancy Zlatintsi at NTUA CVSP Lab for Fig. 15.8 and discussions related to Sect. 15.3.2. This research work was supported by the project COGNIMUSE which is implemented under the ARISTEIA Action of the Operational Program Education and Lifelong Learning and is co-funded by the European Social Fund and Greek National Resources. It was also partially supported by the European Union under the project MOBOT with grant FP7-ICT-2011-9 2.1 – 600796.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Maragos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Maragos, P., Pitsikalis, V., Katsamanis, A., Pavlakos, G., Theodorakis, S. (2016). On Shape Recognition and Language. In: Breuß, M., Bruckstein, A., Maragos, P., Wuhrer, S. (eds) Perspectives in Shape Analysis. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-24726-7_15

Download citation

Publish with us

Policies and ethics