Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Practical and Provably Secure Distance-Bounding

  • Conference paper
  • First Online:
Information Security

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7807))

Abstract

From contactless payments to remote car unlocking, many applications are vulnerable to relay attacks. Distance bounding protocols are the main practical countermeasure against these attacks. At FSE 2013, we presented SKI as the first family of provably secure distance bounding protocols. At LIGHTSEC 2013, we presented the best attacks against SKI. In this paper, we present the security proofs. More precisely, we explicate a general formalism for distance-bounding protocols. Then, we prove that SKI and its variants is provably secure, even under the real-life setting of noisy communications, against the main types of relay attacks: distance-fraud and generalised versions of mafia- and terrorist-fraud. For this, we reinforce the idea of using secret sharing, combined with the new notion of a leakage scheme. In view of resistance to mafia-frauds and terrorist-frauds, we present the notion of circular-keying for pseudorandom functions (PRFs); this notion models the employment of a PRF, with possible linear reuse of the key. We also use PRF masking to fix common mistakes in existing security proofs/claims.

The full version of this paper is available as [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to space constraints, we refer to these papers for an overview of DB protocols.

  2. 2.

    As far as we know, there exists only one other protocol with full provable security. It was presented at ACNS 2013 [12] and compared with SKI at PROVSEC 2013 [17]. All other protocols fail against at least one threat model. (See [7, Section 2].).

  3. 3.

    In this paper, there is just one common input, i.e., we assume \(x=y\).

  4. 4.

    This is to capture distance hijacking [10]. (See [8].).

  5. 5.

    Here, we deviate from Definition 4 a bit by introducing \(P^*(x)\) in the MiM attack.

  6. 6.

    Secret sharing is used to defeat an attack from [16] which is further discussed in [3].

References

  1. Avoine, G., Bingöl, M., Kardas, S., Lauradoux, C., Martin, B.: A framework for analyzing RFID distance bounding protocols. J. Comput. Secur. 19(2), 289–317 (2011)

    Google Scholar 

  2. Avoine, G., Lauradoux, C., Martin, B.: How secret-sharing can defeat terrorist fraud. In: ACM Conference on Wireless Network Security, WISEC 2011, Hamburg, Germany, pp. 145–156. ACM (2011)

    Google Scholar 

  3. Bay, A., Boureanu, I., Mitrokotsa, A., Spulber, I., Vaudenay, S.: The bussard-bagga and other distance-bounding protocols under attacks. In: Kutylowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 371–391. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: On the pseudorandom function assumption in (secure) distance-bounding protocols. In: Hevia, A., Neven, G. (eds.) LatinCrypt 2012. LNCS, vol. 7533, pp. 100–120. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Boureanu, I., Mitrokotsa, A., Vaudenay,S.: On the need for secure distance-bounding. In: Early Symmetric Crypto, ESC 2013, Mondorf-les-Bains, Luxembourg, pp. 52–60. University of Luxembourg (2013)

    Google Scholar 

  6. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Towards secure distance bounding. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 55–68. Springer, Heidelberg (2014). http://eprint.iacr.org/2015/208.pdf

    Google Scholar 

  7. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 97–113. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Boureanu, I., Mitrokotsa, K., Vaudenay, S.: Practical and provably secure distance-bounding. To appear in the Journal of Computer Security (JCS). IOS Press, Eprint 2013/465. http://eprint.iacr.org/2013/465.pdf

  9. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cremers, C.J.F., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks on distance bounding protocols. In: IEEE Symposium on Security and Privacy, S&P 2012, San Francisco, California, USA, pp. 113-127. IEEE Computer Society (2012)

    Google Scholar 

  11. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A formal approach to distance-bounding RFID protocols. In: Zhou, J., Li, H., Lai, X. (eds.) ISC 2011. LNCS, vol. 7001, pp. 47–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Fischlin, M., Onete, C.: Terrorism in distance bounding: modeling terrorist-fraud resistance. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 414–431. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Hancke, G.P: Distance bounding for RFID: effectiveness of terrorist fraud. In: Conference on RFID-Technologies and Applications, RFID-TA 2012, Nice, France, pp. 91–96. IEEE (2012)

    Google Scholar 

  14. Hancke, G.P., Kuhn, M.G.: An RFID distance bounding protocol. In: Conference on Security and Privacy for Emerging Areas in Communications Networks, SecureComm 2005, Athens, Greece, pp. 67-73. IEEE (2005)

    Google Scholar 

  15. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Vaudenay, S.: On modeling terrorist frauds. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 1–20. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Vaudenay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Boureanu, I., Mitrokotsa, A., Vaudenay, S. (2015). Practical and Provably Secure Distance-Bounding. In: Desmedt, Y. (eds) Information Security. Lecture Notes in Computer Science(), vol 7807. Springer, Cham. https://doi.org/10.1007/978-3-319-27659-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27659-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27658-8

  • Online ISBN: 978-3-319-27659-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics