Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mobile Agents Rendezvous in Spite of a Malicious Agent

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9536))

  • 585 Accesses

Abstract

We examine the problem of rendezvous, i.e., having multiple mobile agents gather in a single node of the network. Unlike previous studies, we need to achieve rendezvous in presence of a very powerful adversary, a malicious agent that moves through the network and tries to block the honest agents and prevents them from gathering. The malicious agent can be thought of as a mobile fault in the network. The malicious agent is assumed to be arbitrarily fast, has full knowledge of the network and it cannot be exterminated by the honest agents. On the other hand, the honest agents are assumed to be quite weak: They are asynchronous and anonymous, they have only finite memory, they have no prior knowledge of the network and they can communicate with the other agents only when they meet at a node. Can the honest agents achieve rendezvous starting from an arbitrary configuration in spite of the malicious agent? We present some necessary conditions for solving rendezvous in spite of the malicious agent in arbitrary networks. We then focus on the ring and mesh topologies and provide algorithms to solve rendezvous. For ring networks, our algorithms solve rendezvous in all feasible instances of the problem, while we show that rendezvous is impossible for an even number of agents in unoriented rings. For the oriented mesh networks, we prove that the problem can be solved when the honest agents initially form a connected configuration without holes if and only if they can see which are the occupied nodes within a two-hops distance. To the best of our knowledge, this is the first attempt to study such a powerful and mobile fault model, in the context of mobile agents. Our model lies between the more powerful but static fault model of black holes (which can even destroy the agents), and the less powerful but mobile fault model of Byzantine agents (which can only imitate the honest agents but can neither harm nor stop them).

S. Das—This work has been partially supported by the ANR - MACARON project (anr-13-js02-0002).

F.L. Luccio—This work has been partially supported by the PRIN 2010 Project Security Horizons.

E. Markou—Part of this work has been done while this author was visiting Università Ca’ Foscari Venezia. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) — Research Funding Program: THALIS-NTUA (MIS 379414).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We select as searcher the second agent that arrives at node v.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpern, S., Gal, S.: Searching for an agent who may or may not want to be found. Oper. Res. 50(2), 311–323 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bampas, E., Leonardos, N., Markou, E., Pagourtzis, A., Petrolia, M.: Improved periodic data retrieval in asynchronous rings with a faulty host. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 355–370. Springer, Heidelberg (2014)

    Google Scholar 

  4. Barriere, L., Flocchini, P., Fomin, F.V., Fraigniaud, P., Nisse, N., Santoro, N., Thilikos, D.: Connected graph searching. Inf. Comput. 219, 1–16 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, 8–11 July 2013, Philadelphia, Pennsylvania, USA, pp. 337–346 (2013)

    Google Scholar 

  6. Chalopin, J., Das, S.: Rendezvous of mobile agents without agreement on local orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 515–526. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Fault-tolerant rendezvous in networks. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 411–422. Springer, Heidelberg (2014)

    Google Scholar 

  9. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proceedings of 21st Annual ACM-SIAM Symposium on Discrete Algorithms (2010)

    Google Scholar 

  11. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci. 3(18), 547–564 (2007)

    Article  MathSciNet  Google Scholar 

  16. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 3(52), 167–178 (2008)

    Article  MathSciNet  Google Scholar 

  17. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: optimal black hole search with pebbles. Algorithmica 62(3–4), 1006–1033 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In: Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing, Chap. 3, pp. 41–70. Wiley, Hoboken (2012)

    Chapter  Google Scholar 

  19. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation results for black hole search in arbitrary graphs. TCS 384(2–3), 201–221 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a malicious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 157–167. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  21. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Synthesis Lectures on Distributed Computing Theory. Morgan and Claypool Publishers, San Rafael (2010)

    Google Scholar 

  22. Luccio, F.L.: Contiguous search problem in sierpinski graphs. Theory Comput. Syst. 44, 186–204 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic edge evolving ring. In: ICNC, pp. 103–112 (2012)

    Google Scholar 

  24. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  25. Zeng, Y., Hu, X., Shin, K.: Detection of botnets using combined host- and network-level information. In: IEEE/IFIP DSN 2010, pp. 291–300, June 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flaminia L. Luccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Das, S., Luccio, F.L., Markou, E. (2015). Mobile Agents Rendezvous in Spite of a Malicious Agent. In: Bose, P., Gąsieniec, L., Römer, K., Wattenhofer, R. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2015. Lecture Notes in Computer Science(), vol 9536. Springer, Cham. https://doi.org/10.1007/978-3-319-28472-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28472-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28471-2

  • Online ISBN: 978-3-319-28472-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics