Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Analysis of Simple Genetic Programming for Evolving Boolean Functions

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Included in the following conference series:

Abstract

This work presents a first step towards a systematic time and space complexity analysis of genetic programming (GP) for evolving functions with desired input/output behaviour. Two simple GP algorithms, called (1+1) GP and (1+1) GP*, equipped with minimal function (F) and terminal (L) sets are considered for evolving two standard classes of Boolean functions. It is rigorously proved that both algorithms are efficient for the easy problem of evolving conjunctions of Boolean variables with the minimal sets. However, if an extra function (i.e. NOT) is added to F, then the algorithms require at least exponential time to evolve the conjunction of n variables. On the other hand, it is proved that both algorithms fail at evolving the difficult parity function in polynomial time with probability at least exponentially close to 1. Concerning generalisation, it is shown how the quality of the evolved conjunctions depends on the size of the training set s while the evolved exclusive disjunctions generalize equally badly independent of s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We assume the SUB and DEL of an empty tree return an empty tree.

  2. 2.

    Simplification is a conceptual tool used for the proofs. The actual tree contains all the variables (i.e., the algorithm does not simplify the trees).

References

  1. Auger, A., Doerr, B.: Theory of Randomized Search Heuristics: Foundations and Recent Developments. World Scientific, Singapore (2011)

    Book  MATH  Google Scholar 

  2. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kötzing, T., Sutton, A.M., Neumann, F., O’Reilly, U.M.: The max problem revisited: the importance of mutation in genetic programming. Theor. Comp. Sci. 545, 94–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  5. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  6. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  7. Luke, S.: Genetic programming produced competitive soccer softbot teams for RoboCup97. In: Proceedings of the Third Annual Conference on Genetic Programming 1998, pp. 214–222. Morgan Kaufmann (1998)

    Google Scholar 

  8. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  9. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions. In: Proceedings of FOGA XII, pp. 119–132. ACM (2013)

    Google Scholar 

  10. Neumann, F., O’Reilly, U.M., Wagner, M.: Computational complexity analysis of genetic programming - initial results and future directions. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation, pp. 113–128. Springer, New York (2011)

    Chapter  Google Scholar 

  11. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algorithms and Their Computational Complexity. Natural Computing Series. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  12. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59(3), 369–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. O’Neill, M., Vanneschi, L., Gustafson, S., Banzhaf, W.: Open issues in genetic programming. Genet. Program. Evolvable Mach. 11(3–4), 339–363 (2010)

    Article  Google Scholar 

  14. O’Reilly, U.-M., Oppacher, F.: Program search with a hierarchical variable length representation: genetic programming, simulated annealing and hill climbing. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 397–406. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  15. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming (2008). http://lulu.com

  16. Poli, R., McPhee, N.F., Rowe, J.E.: Exact schema theory and Markov chain models for genetic programming and variable-length genetic algorithms with homologous crossover. Genet. Program. Evolvable Mach. 5(1), 31–70 (2004)

    Article  Google Scholar 

  17. Spector, L., Barnum, H., Bernstein, H.J., Swamy, N.: Quantum computing applications of genetic programming. In: Spector, L., Langdon, W.B., O’Reilly, U.M., Angeline, P.J. (eds.) Advances in Genetic Programming 3, pp. 135–160. MIT Press, Cambridge (1999)

    Google Scholar 

  18. Valiant, L.G.: Evolvability. J. ACM 56(1), 3:1–3:21 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alberto Moraglio for constructive discussions which initialised this work. Further preliminary discussions occurred at Dagstuhl Seminar N.15211. This work was supported by EPSRC under Grant n. EP/M004252/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro S. Oliveto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mambrini, A., Oliveto, P.S. (2016). On the Analysis of Simple Genetic Programming for Evolving Boolean Functions. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics