Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automated Table Understanding Using Stub Patterns

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9642))

Included in the following conference series:

Abstract

Tables in documents are a rich source of information, but not yet well-utilised computationally because of the difficulty of extracting their structure and data automatically. In this paper, we progress the state-of-the-art in automatic table extraction by identifying common patterns in table headers to develop rules and heuristics for determining table structure. We describe and evaluate a table understanding system using these patterns and rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://tate.srvr.cse.unsw.edu.au/tate2/TATE.html.

  2. 2.

    XSLT, http://www.w3.org/TR/xslt.

  3. 3.

    http://www.iapr-tc11.org/mediawiki/index.php/The_DocLab_Dataset_for_Evaluating_Table_Interpretation_Methods.

  4. 4.

    We are grateful to the authors of work for sharing the dataset.

  5. 5.

    http://www.tamirhassan.com/dataset/.

  6. 6.

    http://staff.icar.cnr.it/ruffolo/files/PDF-TREX-Dataset.zip.

  7. 7.

    The ICDAR dataset only has ground truth for table extraction (locating and segmenting).

References

  1. Alrayes, N., Luk, W.-S.: Automatic transformation of multi-dimensional web tables into data cubes. Data Warehousing and Knowledge Discovery. LNCS, vol. 7448, pp. 81–92. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. e Silva, A.C., Jorge, A., Torgo, L.: Design of an end-to-end method to extract information from tables. IJDAR 82(2–3), 144–171 (2006)

    Article  Google Scholar 

  3. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table-processing paradigms: a research survey. IJDAR 8(2–3), 66–86 (2006)

    Article  Google Scholar 

  4. Fang, J., Mitra, P., Tang, Z., Giles, C.L.: Table header detection and classification. In: AAAI (2012)

    Google Scholar 

  5. Jha, P., Nagy, G.: Wang notation tool: layout independent representation of tables. In: ICPR, pp. 1–4. IEEE (2008)

    Google Scholar 

  6. Nagy, G.: Learning the characteristics of critical cells from web tables. In: ICPR, pp. 1554–1557. IEEE (2012)

    Google Scholar 

  7. Nagy, G., Seth, S., Embley, D.W.: End-to-end conversion of html tables for populating a relational database. In: DAS, pp. 222–226. IEEE (2014)

    Google Scholar 

  8. Nagy, G., Tamhankar, M.: Vericlick: an efficient tool for table format verification. In: IS&T/SPIE Electronic Imaging, pp. 1–9 (2012)

    Google Scholar 

  9. Oro, E., Ruffolo, M.: PDF-TREX: an approach for recognizing and extracting tables from pdf documents. In: ICDAR, pp. 906–910. IEEE (2009)

    Google Scholar 

  10. Padmanabhan, R.K.: Table abstraction tool. PhD thesis, Citeseer (2009)

    Google Scholar 

  11. Rastan, R., Paik, H.-Y., Shepherd, J.: TEXUS: a task-based approach for table extraction and understanding. In: DocEng2015, pp. 25–34 (2015)

    Google Scholar 

  12. Seth, S., Jandhyala, R., Krishnamoorthy, M., Nagy, G.: Analysis and taxonomy of column header categories for web tables. In: IAPR, pp. 81–88. ACM (2010)

    Google Scholar 

  13. Seth, S., Nagy, G.: Segmenting tables via indexing of value cells by table headers. In: ICDAR, pp. 887–891. IEEE (2013)

    Google Scholar 

  14. Wang, X.: Tabular abstraction, editing, and formatting. PhD thesis, University of Waterloo (1996)

    Google Scholar 

  15. Zanibbi, R., Blostein, D., Cordy, J.R.: A survey of table recognition. Doc. Anal. Recogn. 7(1), 1–16 (2004)

    Google Scholar 

  16. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Rastan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rastan, R., Paik, Hy., Shepherd, J., Haller, A. (2016). Automated Table Understanding Using Stub Patterns. In: Navathe, S., Wu, W., Shekhar, S., Du, X., Wang, X., Xiong, H. (eds) Database Systems for Advanced Applications. DASFAA 2016. Lecture Notes in Computer Science(), vol 9642. Springer, Cham. https://doi.org/10.1007/978-3-319-32025-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32025-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32024-3

  • Online ISBN: 978-3-319-32025-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics