Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Trends in Temporal Reasoning: Constraints, Graphs and Posets

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

Abstract

Temporal reasoning finds many applications in numerous fields of artificial intelligence – frameworks for representing and analyzing temporal information are therefore important. Allen’s interval algebra is a calculus for temporal reasoning that was introduced in 1983. Reasoning with qualitative time in Allen’s full interval algebra is NP-complete. Research since 1995 identified maximal tractable subclasses of this algebra via exhaustive computer search and also other ad-hoc methods. In 2003, the full classification of complexity for satisfiability problems over constraints in Allen’s interval algebra was established algebraically. We review temporal reasoning concepts including a method for deciding tractability of temporal constraint satisfaction problems based on the theory of algebraic closure operators for constraints. Graph-based temporal representations such as interval and sequence graphs are discussed. We also propose novel research for scheduling algorithms based on the Fishburn-Shepp inequality for posets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout we assume \(P \ne NP\).

References

  1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Allen, J.F.: Temporal reasoning and planning. In: Allen, J.F., Kautz, H.A., Pelavin, R.N., Tenenberg, J.D. (eds.) Reasoning About Plans, Chapter 1, pp. 1–67. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  3. Coombs, C.H., Smith, J.E.K.: On the detection of structures in attitudes and developmental processses. Psych. Rev. 80, 337–351 (1973)

    Article  Google Scholar 

  4. Dechter, R., Meiri, I., Pearl, J.: Temporal constraint networks. Artif. Intell. 49(1–3), 61–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dorn, J.: Temporal reasoning in sequence graphs. In: AAAI 1992, pp. 735–740 (1992)

    Google Scholar 

  6. Drakengren, T., Jonsson, P.: Eight maximal tractable subclasses of Allen’s algebra with metric time. J. Artif. Intell. Res. 7, 25–45 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Drakengren, T., Jonsson, P.: Twenty-one large tractable subclasses of Allen’s algebra. Artif. Intell. 93(1–2), 297–319 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drakengren, T., Jonsson, P.: A complete classification of tractability in Allen’s algebra relative to subsets of basic relations. Artif. Intell. 106(2), 205–219 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fishburn, P.C.: A correlational inequality for linear extensions of a poset. Order 1(2), 127–137 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gerevini, A., Schubert, L.K., Schaeffer, S.: Temporal reasoning in Timegraph I-II. SIGART Bull. 4(3), 21–25 (1993)

    Article  Google Scholar 

  11. Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Adv. Appl. Math. 15, 251–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golumbic, M.C., Shamir, R.: Algorithms and complexity for reasoning about time. In: AAAI 1992, pp. 741–747 (1992)

    Google Scholar 

  13. Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph theoretic approach. J. ACM 40(5), 1108–1133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeavons, P., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jonsson, P., Bäckström, C.: A linear-programming approach to temporal reasoning. In: AAAI 1996, pp. 1235–1240 (1996)

    Google Scholar 

  16. Juarez, J.M., Campos, M., Morales, A., Palma, J., Marin, R.: Applications of temporal reasoning to intensive care units. J. Healthc. Eng. 1(4), 615–636 (2010)

    Article  Google Scholar 

  17. Karp, R.M.: Mapping the genome: some combinatorial problems arising in molecular biology. In: STOC 1993, pp. 278–285 (1993)

    Google Scholar 

  18. Kautz, H.A., Ladkin, P.B.: Integrating metric and qualitative temporal reasoning. In: AAAI 1991, pp. 241–246 (1991)

    Google Scholar 

  19. Krieger, H.-U., Kiefer, B., Declerck, T.: A framework for temporal representation and reasoning in business intelligence applications. In: AAAI Spring Symposium: AI Meets Business Rules and Process Management, pp. 59–70 (2008)

    Google Scholar 

  20. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: the tractable subalgebras of Allen’s interval algebra. J. ACM 50(5), 591–640 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladkin, P.B., Maddux, R.D.: On binary constraint networks, Technical report KES. U.88.8, Kestrel Institute, Palo Alto, CA (1988)

    Google Scholar 

  22. Ligozat, G.: Figures for thought: temporal reasoning with pictures, AAAI Technical report WS-97-11, pp. 31–36 (1997)

    Google Scholar 

  23. Ligozat, G.: “Corner" relations in Allen’s algebra. Constraints 3(2–3), 165–177 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mandoiu, I., Zelikovsky, A. (eds.): Bioinformatics Algorithms: Techniques and Applications. Wiley Series in Bioinformatics. Wiley Interscience, Hoboken (2008)

    MATH  Google Scholar 

  26. Meiri, I.: Combining qualitative and quantitative constraints in temporal reasoning. In: AAAI 1991, pp. 260–267 (1991)

    Google Scholar 

  27. Nebel, B., Bürckert, H.-J.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995)

    Article  MATH  Google Scholar 

  28. Nökel, K. (ed.): Temporally Distributed Symptoms in Technical Diagnosis. LNCS (LNAI), vol. 517. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  29. Pe’er, I., Shamir, R.: Satisfiability problems on intervals and unit intervals. Theoret. Comput. Sci. 175(2), 349–372 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2), 373–386 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shepp, L.A.: The XYZ conjecture and the FKG inequality. Ann. Probab. 10(3), 824–827 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, F., Cohen, R.: The interpretation of temporal relations in narrative. In: AAAI 1988, pp. 745–750 (1988)

    Google Scholar 

  33. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Inform. 6(2), 171–185 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. van Beek, P.: Approximation algorithms for temporal reasoning. In: IJCAI 1989, pp. 1291–1296 (1989)

    Google Scholar 

  35. van Beek, P.: Reasoning about qualitative temporal information. In: AAAI 1990, pp. 728–734 (1990)

    Google Scholar 

  36. van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell. 58(1–3), 297–326 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Comput. Intell. 6(3), 132–144 (1990)

    Article  Google Scholar 

  38. Vilain, M.B.: A system for reasoning about time. In: AAAI 1982, pp. 197–201 (1982)

    Google Scholar 

  39. Vilain, M., Kautz, H.: Constraint propagation algorithms for temporal reasoning. In: AAAI 1986, pp. 377–382 (1986)

    Google Scholar 

  40. Vilain, M., Kautz, H., van Beek, P.: Constraint propagation algorithms for temporal reasoning: a revised report. In: Weld, D.S., de Kleer, J. (eds.) Readings in Qualitative Reasoning about Physical Systems, pp. 373–381. Morgan Kaufmann, California (1989)

    Google Scholar 

  41. Ward, S.A., Halstead, R.H.: Computation Structures. MIT Press, Cambridge, Mass (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline W. Daykin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Daykin, J.W., Miller, M., Ryan, J. (2016). Trends in Temporal Reasoning: Constraints, Graphs and Posets. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics