Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Next Whisky Bar

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

Abstract

We determine the complexity of an optimization problem related to information theory. Taking a conjunctive propositional formula over some finite set of Boolean relations as input, we seek a satisfying assignment of the formula having minimal Hamming distance to a given assignment that is not required to be a model (NearestSolution, NSol). We obtain a complete classification with respect to the relations admitted in the formula. For two classes of constraint languages we present polynomial time algorithms; otherwise, we prove hardness or completeness concerning the classes APX, poly-APX, NPO, or equivalence to well-known hard optimization problems.

The title refers to the Alabama Song by Bertolt Brecht (lyrics), Kurt Weill (music), and Elisabeth Hauptmann (English translation). Among the numerous cover versions, the one by Jim Morrison and the Doors became particularly popular in the 1970s.

M. Behrisch, and G. Salzer — Supported by Austrian Science Fund (FWF) grant I836-N23.

M. Hermann — Supported by ANR-11-ISO2-003-01 Blanc International grant ALCOCLAN.

S. Mengel — Research of this author was done during his post-doctoral stay in LIX at École Polytechnique. Supported by a QUALCOMM grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2), 317–331 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  3. Bailleux, O., Marquis, P.: Some computational aspects of Distance-SAT. J. Autom. Reasoning 37(4), 231–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: Give me another one!. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 664–676. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_56

    Google Scholar 

  5. Behrisch, M., Hermann, M., Mengel, S., Salzer, G.: As close as it gets. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 222–235. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30139-6_18

    Google Scholar 

  6. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: constraint satisfaction problems. SIGACT News, Complex. Theor. Column 43 35(1), 22–35 (2004)

    Google Scholar 

  7. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Inf. Process. Lett. 96(2), 59–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (PA) (2001)

    Book  MATH  Google Scholar 

  9. Hochbaum, D.S., Megiddo, N., Naor, J., Tamir, A.: Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality. Math. Program. 62(1–3), 69–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM J. Comput. 30(6), 1863–1920 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Symposium on Theory of Computing (STOC 1978), San Diego, pp. 216–226 (1978)

    Google Scholar 

  12. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Hermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Behrisch, M., Hermann, M., Mengel, S., Salzer, G. (2016). The Next Whisky Bar. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics