Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Monadic Sequence Testing and Explicit Test-Refinements

  • Conference paper
  • First Online:
Tests and Proofs (TAP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9762))

Included in the following conference series:

Abstract

We present an abstract framework for sequence testing that is implemented in Isabelle/HOL-TestGen. Our framework is based on the theory of state-exception monads, explicitly modelled in HOL, and can cope with typed input and output, interleaving executions including abort, and synchronisation.

The framework is particularly geared towards symbolic execution and has proven effective in several large case-studies involving system models based on large (or infinite) state.

On this basis, we rephrase the concept of test-refinements for inclusion, deadlock and IOCO-like tests, together with a formal theory of its relation to traditional, IO-automata based notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The core-example of [4] can be decomposed into 70000 abstract test-cases in less than two hours on a conventional laptop in HOL-TestGen [6].

  2. 2.

    The Monads.thy-library provides the \(\text {assert}_{SE}\)-operator for this purpose.

  3. 3.

    In a definition variant with \('\tau \), these actions must be skipped.

References

  1. Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  2. Brucker, A.D., Brügger, L., Wolff, B.: Formal firewall conformance testing: An application of test and proof techniques. Softw. Testing Verif. Reliab. (STVR) 25(1), 34–71 (2015)

    Article  Google Scholar 

  3. Brucker, A.D., Feliachi, A., Nemouchi, Y., Wolff, B.: Test program generation for a microprocessor. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 76–95. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Brucker, A.D., Havle, O., Nemouchi, Y., Wolff, B.: Testing the IPC protocol for a real-time operating system. In: Gurfinkel, A., Seshia, S.A. (eds.) VSTTE 2015. LNCS, vol. 9593, pp. 40–60. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29613-5_3

    Chapter  Google Scholar 

  5. Brucker, A.D., Wolff, B.: Test-sequence generation with Hol-TestGen with an application to firewall testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 149–168. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Brucker, A.D., Wolff, B.: On theorem prover-based testing. Formal Aspects Comput. (FAC) 25(5), 683–721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the extended finite state machine model. In: International Design Automation Conference, DAC 1993, pp. 86–91. ACM, New York (1993)

    Google Scholar 

  8. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5(2), 56–68 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Antoni, L., Veanes, M.: Minimization of symbolic automata. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL, pp. 541–554. ACM (2014)

    Google Scholar 

  10. Feliachi, A., Gaudel, M., Wenzel, M., Wolff, B.: The circus testing theory revisited in Isabelle/HOL. In: Formal Methods and Software Engineering, pp. 131–147 (2013)

    Google Scholar 

  11. Fraenkel, A., Bar-Hillel, Y.: Foundations of Set Theory. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1958)

    MATH  Google Scholar 

  12. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A symbolic framework for model-based testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES 2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  14. Halmos, P.: Naive Set Theory. Undergraduate Texts in Mathematics. Springer, New York (1974)

    Book  MATH  Google Scholar 

  15. Jard, C., Jéron, T.: TGV: theory, principles and algorithms. STTT 7(4), 297–315 (2005)

    Article  Google Scholar 

  16. Jéron, T.: Symbolic model-based test selection. Electr. Notes Theor. Comput. Sci. 240, 167–184 (2009)

    Article  MATH  Google Scholar 

  17. Kalaji, A.S., Hierons, R.M., Swift, S.: Generating feasible transition paths for testing from an extended finite state machine (EFSM) with the counter problem. In: Third International Conference on Software Testing, Verification and Validation, ICST, pp. 232–235. IEEE Computer Society (2010)

    Google Scholar 

  18. Ponce de León, H., Haar, S., Longuet, D.: Conformance relations for labeled event structures. In: Brucker, A.D., Julliand, J. (eds.) TAP 2012. LNCS, vol. 7305, pp. 83–98. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Quarterly 2(3), 219–246 (1989)

    MathSciNet  MATH  Google Scholar 

  20. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (1955)

    Article  MathSciNet  Google Scholar 

  21. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C., McCarthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press, Princeton (1956)

    Google Scholar 

  22. Rusu, V., Marchand, H., Jéron, T.: Automatic verification and conformance testing for validating safety properties of reactive systems. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 189–204. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Tretmanns, J., Belifante, Z.: Automatic testign with formal methods. In: 7th European International Conference on Software Testing, Analysis and Review (EuroSTAR 1999) (1999)

    Google Scholar 

  24. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Soft. Concepts Tools 17(3), 103–120 (1996)

    MATH  Google Scholar 

  25. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp. 1–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Veanes, M., Bjørner, N.: Alternating simulation and IOCO. STTT 14(4), 387–405 (2012)

    Article  Google Scholar 

  27. Veanes, M., Bjørner, N.: Symbolic automata: the toolkit. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 472–477. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Euro-MILS project funded by the European Union’s Programme [FP7/2007-2013] under grant agreement number ICT-318353.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim D. Brucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Brucker, A.D., Wolff, B. (2016). Monadic Sequence Testing and Explicit Test-Refinements. In: Aichernig, B., Furia, C. (eds) Tests and Proofs. TAP 2016. Lecture Notes in Computer Science(), vol 9762. Springer, Cham. https://doi.org/10.1007/978-3-319-41135-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41135-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41134-7

  • Online ISBN: 978-3-319-41135-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics