Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstraction as a Mechanism to Cross the Reality Gap in Evolutionary Robotics

  • Conference paper
  • First Online:
From Animals to Animats 14 (SAB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9825))

Included in the following conference series:

  • 1282 Accesses

Abstract

One of the major challenges of Evolutionary Robotics is to transfer robot controllers evolved in simulation to robots in the real world. In this article, we investigate abstraction on the sensory inputs and motor actions as a potential solution to this problem. Abstraction means that the robot uses preprocessed sensory inputs and closed loop low-level controllers that execute higher level motor commands. We apply abstraction to the task of forming an asymmetric triangle with a homogeneous swarm of MAVs. The results show that the evolved behavior is effective both in simulation and reality, suggesting that abstraction can be a useful tool in making evolved behavior robust to the reality gap. Furthermore, we study the evolved solution, showing that it exploits the environment (in this case the identical behavior of the other robots) and creates behavioral attractors resulting in the creation of the required formation. Hence, the analysis suggests that by using abstraction, sensory-motor coordination is not necessarily lost but rather shifted to a higher level of abstraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, E., Beer, R.D.: The evolution and analysis of action switching in embodied agents. Adapt. Behav. 22(1), 3–20 (2013)

    Article  Google Scholar 

  2. Beer, R.D., Gallagher, J.C.: Evolving dynamical neural networks for adaptive behavior. Adapt. Behav. 1(1), 91–122 (1992)

    Article  Google Scholar 

  3. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)

    Article  Google Scholar 

  4. Bongard, J.C., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  5. Cully, A., Clune, J., Tarapore, D., Mouret, J.B.: Robots that can adapt like animals. Nature 521(7553), 503–507 (2015). http://dx.doi.org/10.1038/nature14422, http://www.nature.com/nature/journal/v521/n7553/abs/nature14422.html#supplementary-information

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Duarte, M., Costa, V., Gomes, J., Rodrigues, T., Silva, F., Oliveira, S.M., Christensen, A.L.: Evolution of collective behaviors for a real swarm of aquatic surface robots. PLoS ONE 11(3), 1–25 (2016)

    Article  Google Scholar 

  8. Eiben, A.E., Kernbach, S., Haasdijk, E.: Embodied artificial evolution: artificial evolutionary systems in the 21st Century. Evol. Intell. 5(4), 261–272 (2012)

    Article  Google Scholar 

  9. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  10. Floreano, D., Mondada, F.: Automatic creation of an autonomous agent: genetic evolution of a neural-network driven robot. In: Cliff, D., Husbands, P., Meyer, J.A., Wilson, S. (eds.) Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats 3, pp. 421–430. MIT Press, Cambridge (1994)

    Google Scholar 

  11. Floreano, D., Mondada, F.: Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(3), 396–407 (1996)

    Article  Google Scholar 

  12. Hattenberger, G., Bronz, M., Gorraz, M.: Using the Paparazzi UAV system for scientific research. In: International Micro Air Vehicle Conference and Competition 2014, IMAV, Delft, Netherlands, pp. 247–252 (2014)

    Google Scholar 

  13. Izzo, D., Pettazzi, L.: Autonomous and distributed motion planning for satellite swarm. J. Guidance Control Dyn. 30(2), 449–459 (2007)

    Article  Google Scholar 

  14. Izzo, D., Simões, L.F., de Croon, G.C.H.E.: An evolutionary robotics approach for the distributed control of satellite formations. Evol. Intell. 7(2), 107–118 (2014)

    Article  Google Scholar 

  15. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University of Sussex (1998)

    Google Scholar 

  16. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the reality gap in evolutionary robotics. Trans. Evol. Comput. 17(1), 122–145 (2013)

    Article  Google Scholar 

  17. Lipson, H.: Evolutionary robotics: emergence of communication. Curr. Biol. 17(9), 129–155 (2007)

    Article  Google Scholar 

  18. Love, J.: Process Automation Handbook, 1st edn. Springer, London (2007). No. 800 in Production & Process Engineering

    MATH  Google Scholar 

  19. Natural Point Inc: Optitrack (2014). www.naturalpoint.com/optitrack/

  20. Nolfi, S.: Power and limits of reactive agents. Neurocomputing 42, 119–145 (2002)

    Article  MATH  Google Scholar 

  21. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence and Technology. MIT Press, Cambridge (2000)

    Google Scholar 

  22. Parrot: ARDrone 2. www.ardrone2.parrot.com/

  23. Remes, B., Hensen, D., van Tienen, F., de Wagter, C., van der Horst, E., de Croon, G.: Paparazzi: how to make a swarm of Parrot AR Drones fly autonomously based on GPS. In: Proceedings of the International Micro Air Vehicle Conference and Flight Competition, IMAV, Toulouse, France, pp. 17–20 (2013)

    Google Scholar 

  24. Scheper, K.Y.W., Tijmons, S., de Visser, C.C., de Croon, G.C.H.E.: Behaviour trees for evolutionary robotics. Artif. Life 22(1), 23–48 (2016)

    Article  Google Scholar 

  25. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk Y. W. Scheper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Scheper, K.Y.W., de Croon, G.C.H.E. (2016). Abstraction as a Mechanism to Cross the Reality Gap in Evolutionary Robotics. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds) From Animals to Animats 14. SAB 2016. Lecture Notes in Computer Science(), vol 9825. Springer, Cham. https://doi.org/10.1007/978-3-319-43488-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43488-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43487-2

  • Online ISBN: 978-3-319-43488-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics