Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Positive Definite Matrices: Data Representation and Applications to Computer Vision

  • Chapter
  • First Online:
Algorithmic Advances in Riemannian Geometry and Applications

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Numerous applications in computer vision and machine learning rely on representations of data that are compact, discriminative, and robust while satisfying several desirable invariances. One such recently successful representation is offered by symmetric positive definite (SPD) matrices. However, the modeling power of SPD matrices comes at a price: rather than a flat Euclidean view, SPD matrices are more naturally viewed through curved geometry (Riemannian or otherwise) which often complicates matters. We focus on models and algorithms that rely on the geometry of SPD matrices, and make our discussion concrete by casting it in terms of covariance descriptors for images. We summarize various commonly used distance metrics on SPD matrices, before highlighting formulations and algorithms for solving sparse coding and dictionary learning problems involving SPD data. Through empirical results, we showcase the benefits of mathematical models that exploit the curved geometry of SPD data across a diverse set of computer vision applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.vision.caltech.edu/malaa/software/research/image-search/.

References

  1. P.A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds. (Princeton University Press, Princeton, 2009)

    Google Scholar 

  2. P.A. Absil, C.G. Baker, K.A. Gallivan, Trust-region methods on riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.C. Alexander, C. Pierpaoli, P.J. Basser, J.C. Gee, Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)

    Article  Google Scholar 

  4. V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  5. J. Barzilai, J.M. Borwein, Two-point step size gradient methods. IMA J. Num. Analy. 8(1), 141–148 (1988)

    Google Scholar 

  6. D.P. Bertsekas, Nonlinear Programming, 2nd edn. (Athena Scientific, Belmont, 1999)

    Google Scholar 

  7. R. Bhatia, Positive Definite Matrices. (Princeton University Press, Princeton, 2007)

    Google Scholar 

  8. E. Birgin, J. Martínez, M. Raydan, Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. E.G. Birgin, J.M. Martínez, M. Raydan, Algorithm 813: SPG-Software for Convex-constrained Optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)

    Article  MATH  Google Scholar 

  10. N. Boumal, B. Mishra, P.A. Absil, R. Sepulchre, Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2014)

    MATH  Google Scholar 

  11. P. Brodatz, Textures: a photographic album for artists and designers, vol. 66. (Dover, New York, 1966)

    Google Scholar 

  12. A. Cherian, Nearest neighbors using compact sparse codes,in Proceedings of the International Conference on Machine Learning, pp. 1053–1061 (2014)

    Google Scholar 

  13. A. Cherian, S. Sra, Riemannian sparse coding for positive definite matrices, in Proceedings of the European Conference on Computer Vision. Springer (2014)

    Google Scholar 

  14. A. Cherian, S. Sra, Riemannian dictionary learning and sparse coding for positive definite matrices. (2015). arXiv preprint arXiv:1507.02772

  15. A. Cherian, S. Sra, A. Banerjee, N. Papanikolopoulos, Jensen-bregman logdet divergence with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2161–2174 (2013)

    Article  Google Scholar 

  16. K. Dana, B. Van Ginneken, S. Nayar, J. Koenderink, Reflectance and texture of real-world surfaces. ACM Trans. Graph. (TOG) 18(1), 1–34 (1999)

    Article  Google Scholar 

  17. L. Dodero, H.Q. Minh, M.S. Biagio, V. Murino, D. Sona, Kernel-based classification for brain connectivity graphs on the Riemannian manifold of positive definite matrices, in Proceedings of the International Symposium on Biomedical Imaging, pp. 42–45. IEEE (2015)

    Google Scholar 

  18. M. Elad, M. Aharon, Image denoising via learned dictionaries and sparse representation, in Proceedings of the EEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 895–900. IEEE (2006)

    Google Scholar 

  19. A. Ess, B. Leibe, L.V. Gool, Depth and appearance for mobile scene analysis, in Proceedings of the International Conference on Computer Vision. IEEE (2007)

    Google Scholar 

  20. U. Fano, Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29(1), 74–93 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Faraki, M. Harandi, Bag of riemannian words for virus classification. Case Studies in Intelligent Computing: Achievements and Trends. pp. 271–284 (2014)

    Google Scholar 

  22. D.A. Fehr, Covariance Based Point Cloud Descriptors for Object Detection and Classification. University Of Minnesota, Minneapolis (2013)

    Google Scholar 

  23. D. Fehr, A. Cherian, R. Sivalingam, S. Nickolay, V. Morellas, N. Papanikolopoulos, Compact covariance descriptors in 3d point clouds for object recognition, in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1793–1798. IEEE (2012)

    Google Scholar 

  24. L. Ferro-Famil, E. Pottier, J. Lee, Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier. IEEE Trans. Geosci. Remote Sens. 39(11), 2332–2342 (2001)

    Article  Google Scholar 

  25. K. Guo, P. Ishwar, J. Konrad, Action recognition using sparse representation on covariance manifolds of optical flow, in Proceedings of the Advanced Video and Signal Based Surveillance. IEEE (2010)

    Google Scholar 

  26. M.T. Harandi, R. Hartley, B. Lovell, C. Sanderson, Sparse coding on symmetric positive definite manifolds using bregman divergences. IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–1 (2015)

    Google Scholar 

  27. M. Harandi, M. Salzmann, Riemannian coding and dictionary learning: Kernels to the rescue, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3926–3935 (2015)

    Google Scholar 

  28. J. Ho, Y. Xie, B. Vemuri, On a nonlinear generalization of sparse coding and dictionary learning, in Proceedings of the International Conference on Machine Learning (2013)

    Google Scholar 

  29. S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on the Riemannian manifold of symmetric positive definite matrices, in Proceedings of the Computer Vision and Pattern Recognition. IEEE (2013)

    Google Scholar 

  30. B. Kulis, K. Grauman, Kernelized locality-sensitive hashing for scalable image search. ICCV, October 1, 3 (2009)

    Google Scholar 

  31. K. Lai, L. Bo, X. Ren, D. Fox, A large-scale hierarchical multi-view RGB-D object dataset, in Proceedings of the International Conference on Robotics and Automation (2011)

    Google Scholar 

  32. P. Li, Q. Wang, W. Zuo, L. Zhang, Log-euclidean kernels for sparse representation and dictionary learning, in Proceedings of the International Conference on Computer Vision. IEEE (2013)

    Google Scholar 

  33. C. Liu, Gabor-based kernel PCA with fractional power polynomial models for face recognition. Pattern Anal. Mach. Intell. 26(5), 572–581 (2004)

    Article  Google Scholar 

  34. D. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. program. 45(1), 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Ma, Y. Su, F. Jurie, BiCov: a novel image representation for person re-identification and face verification, in Proceedings of the British Machine Vision Conference (2012)

    Google Scholar 

  36. J. Mairal, F. Bach, J. Ponce, Sparse modeling for image and vision processing (2014). arXiv preprint arXiv:1411.3230

  37. S. Marčelja, Mathematical description of the responses of simple cortical cells*. JOSA 70(11), 1297–1300 (1980)

    Article  MathSciNet  Google Scholar 

  38. T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  39. Y. Pang, Y. Yuan, X. Li, Gabor-based region covariance matrices for face recognition. IEEE Trans. Circuits Syst. Video Technol. 18(7), 989–993 (2008)

    Article  Google Scholar 

  40. X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Phillips, H. Wechsler, J. Huang, P. Rauss, The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  42. P. Phillips, H. Moon, S. Rizvi, P. Rauss, The FERET evaluation methodology for face-recognition algorithms. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  43. W. Schwartz, L. Davis, Learning Discriminative Appearance-Based Models Using Partial Least Squares, in Proceedings of the XXII Brazilian Symposium on Computer Graphics and Image Processing (2009)

    Google Scholar 

  44. M. Schmidt, E. van den Berg, M. Friedlander, K. Murphy, Optimizing costly functions with simple constraints: a limited-memory projected Quasi-Newton algorithm, in Proceedings of the International Conference on Artificial Intelligence and Statistics (2009)

    Google Scholar 

  45. Y. Shinohara, T. Masuko, M. Akamine, Covariance clustering on Riemannian manifolds for acoustic model compression, in proceedings of the International Conference on Acoustics, Speech and Signal Processing (2010)

    Google Scholar 

  46. R. Sivalingam, D. Boley, V. Morellas, N. Papanikolopoulos, Tensor sparse coding for region covariances, in Proceedings of the European Conference on Computer Vision. Springer (2010)

    Google Scholar 

  47. G. Somasundaram, A. Cherian, V. Morellas, N. Papanikolopoulos, Action recognition using global spatio-temporal features derived from sparse representations. Comput. Vis. Image Underst. 123, 1–13 (2014)

    Article  Google Scholar 

  48. S. Sra, Positive Definite Matrices and the S-Divergence, in Proceedings of the American Mathematical Society (2015). arXiv:1110.1773v4

    Google Scholar 

  49. S. Sra, A. Cherian, Generalized dictionary learning for symmetric positive definite matrices with application to nearest neighbor retrieval, in Proceedings of the European Conference on Machine Learning. Springer (2011)

    Google Scholar 

  50. J. Su, A. Srivastava, F. de Souza, S. Sarkar, Rate-invariant analysis of trajectories on riemannian manifolds with application in visual speech recognition, in Proceedings of the Computer Vision and Pattern Recognition, pp. 620–627. IEEE (2014)

    Google Scholar 

  51. D. Tosato, M. Farenzena, M. Spera, V. Murino, M. Cristani, Multi-class classification on Riemannian manifolds for video surveillance, in Proceedings of the European Conference on Computer Vision (2010)

    Google Scholar 

  52. O. Tuzel, F. Porikli, P. Meer.: Covariance Tracking using Model Update Based on Lie Algebra in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  53. O. Tuzel, F. Porikli, P. Meer.: Region covariance: a fast descriptor for detection and classification. in Proceedings of the European Conference on Computer Vision (2006)

    Google Scholar 

  54. R. Wang, H. Guo, L.S. Davis, Q. Dai, Covariance discriminative learning: A natural and efficient approach to image set classification, in Proceedings of the Computer Vision and Pattern Recognition. IEEE (2012)

    Google Scholar 

  55. W. Zheng, H. Tang, Z. Lin, T.S. Huang, Emotion recognition from arbitrary view facial images, in Proceedings of the European Conference on Computer Vision, pp. 490–503. Springer (2010)

    Google Scholar 

Download references

Acknowledgments

AC is funded by the Australian Research Council Centre of Excellence for Robotic Vision (number CE140100016). SS acknowledges support from NSF grant IIS-1409802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Cherian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cherian, A., Sra, S. (2016). Positive Definite Matrices: Data Representation and Applications to Computer Vision. In: Minh, H., Murino, V. (eds) Algorithmic Advances in Riemannian Geometry and Applications. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-45026-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45026-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45025-4

  • Online ISBN: 978-3-319-45026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics