Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ontology Alignment Using Web Linked Ontologies as Background Knowledge

  • Chapter
  • First Online:
Advances in Knowledge Discovery and Management

Abstract

This paper proposes an ontology matching method for aligning a source ontology with target ontologies already published and linked on the Linked Open Data (LOD) cloud. This method relies on the refinement of a set of input alignments generated by existing ontology matching methods. Since the ontologies to be aligned can be expressed in several representation languages with different levels of expressiveness and the existing ontology matching methods can only be applied to some representation languages, the first step of our method consists in applying existing matching methods to as many ontology variants as possible. We then propose to apply two main strategies to refine the initial alignment set: the removal of different kinds of ambiguities between correspondences and the use of the links published on the LOD. We illustrate our proposal in the field of life sciences and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://linkeddata.org.

  2. 2.

    http://oaei.ontologymatching.org.

  3. 3.

    http://aims.fao.org/standards/agrovoc/about.

  4. 4.

    http://agclass.nal.usda.gov/agt.shtml.

  5. 5.

    http://www.geonames.org.

  6. 6.

    http://dbpedia.org.

  7. 7.

    http://www.eionet.europa.eu/gemet.

  8. 8.

    http://www.w3.org/TR/owl-guide.

  9. 9.

    http://www.w3.org/TR/2009/REC-skos-reference-20090818.

  10. 10.

    http://aims.fao.org/access-agrovoc.

  11. 11.

    http://oaei.ontologymatching.org/2007/SKOSParser.pdf.

  12. 12.

    http://agclass.nal.usda.gov.

  13. 13.

    http://www.cs.ox.ac.uk/isg/projects/LogMap/.

  14. 14.

    http://aroma.gforge.inria.fr/.

  15. 15.

    Since ambiguous correspondences according to type 1 produce only noises, the evaluation of the best recall is done considering \(\overset{agr*}{C}\) and not \(\overset{agr}{C}\).

References

  • Aguirre, J., et al. (2012). Results of the ontology alignment evaluation initiative 2012. In Proceedings of 7th ISWC Workshop on Ontology Matching (OM) (p. 73115).

    Google Scholar 

  • Bernstein, P. A., Madhavan, J., & Rahm, E. (2011). Generic schema matching, ten years later. PVLDB, 4(11), 695–701.

    Google Scholar 

  • Bizer, C. (2013). Interlinking scientific data on a global scale. Data Science Journal, 12, GRDI6–GRDI12.

    Google Scholar 

  • Buche, P., et al. (2013). Intégration de données hétérogènes et imprecise guide par une resource termino-ontologique. application au domaine des sciences du vivant. RSTI série Revue dIntelligence Artificielle, 27(4–5), 539–568.

    Google Scholar 

  • Caracciolo, C., Stellato, A., Rajbhandari, S., Morshed, A., Johannsen, G., Keizer, J., et al. (2012). Thesaurus maintenance, alignment and publication as linked data: The AGROVOC use case. IJMSO, 7(1), 65–75.

    Article  Google Scholar 

  • Cruz, I. F., Palmonari, M., Caimi, F., & Stroe, C. (2011). Towards “on the go” matching of linked open data ontologies. In Workshop on Discovering Meaning On the Go in Large Heterogeneous Data 2011 (LHD-11), Barcelona, Spain, July 16, 2011.

    Google Scholar 

  • David, J. (2007). AROMA: une méthode pour la découverte d’alignements orientés entre ontologies partir de règles d’association. Ph.D. thesis, Université de Nantes.

    Google Scholar 

  • David, J., Euzenat, J., Scharffe, F., & Trojahn dos Santos, C. (2011). The alignment api 4.0. Semantic Web, 2(1):310.

    Google Scholar 

  • Eckert, K., Meilicke, C., & Stuckenschmidt, H. (2009). Improving ontology matching using meta-level learning. In The semantic web: research and applications (Vol. 5554, pp. 158–172). Lecture notes in computer science. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Euzenat, J. (2008). Algebras of ontology alignment relations. In International Semantic Web Conference (Vol. 5318). Lecture notes in computer science. Heidelberg: Springer.

    Google Scholar 

  • Euzenat, J., & Shvaiko, P. (2007). Ontology matching (Vol. 18). Heidelberg: Springer.

    MATH  Google Scholar 

  • Ghoula, N., Nindanga, H., & Falquet, G. (2014). Opérateurs de gestion des alignements de ressources de connaissances hétérogènes (to be completed).

    Google Scholar 

  • Grütze, T., Böhm, C., & Naumann, F. (2012). Holistic and scalable ontology alignment for linked open data. In C. Bizer, T. Heath, T. Berners-Lee, & M. Hausenblas (Eds.), WWW2012 Workshop on Linked Data on the Web, Lyon, France, 16 April, 2012 (Vol. 937). CEUR workshop proceedings. CEUR-WS.org.

    Google Scholar 

  • Jain, P., Hitzler, P., Sheth, A. P., Verma, K., & Yeh, P. Z. (2010). Ontology alignment for linked open data. In Proceedings of the 9th International Semantic Web Conference on The Semantic Web - Volume Part I (pp. 402–417). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Jiménez-Ruiz, E., & Grau, B. C. (2011). LogMap: Logic-based and scalable ontology matching. In The Semantic WebISWC 2011 (pp. 273–288). Springer.

    Google Scholar 

  • Lee, Y., Sayyadian, M., Doan, A., & Rosenthal, A. S. (2007). eTuner: Tuning schema matching software using synthetic scenarios. The VLDB Journal, 16(1), 97–122.

    Article  Google Scholar 

  • McCrae, J., Spohr, D., & Cimiano, P. (2011). Linking Lexical resources and ontologies on the semantic web with lemon. In G. Antoniou, M. Grobelnik, E. P. B. Simperl, B. Parsia, D. Plexousakis, P. D. Leenheer, & J. Z. Pan (Eds.), ESWC (1) (Vol. 6643, pp. 245–259). Lecture notes in computer science. Springer.

    Google Scholar 

  • Mochol, M., & Jentzsch, A. (2008). Towards a rule-based matcher selection. In A. Gangemi & J. Euzenat (Eds.), Knowledge engineering: Practice and patterns (Vol. 5268, pp. 109–119). Lecture notes in computer science. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Mougin, F., & Grabar, N. (2013). Using a cross-language approach to acquire new mappings between two biomedical terminologies. In Artificial intelligence in medicine (Vol. 7885, pp. 221–226). Lecture notes in computer science. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Nikolov, A., Uren, V., Motta, E., & Roeck, A. (2009). Overcoming schema heterogeneity between linked semantic repositories to improve coreference resolution. In Proceedings of the 4th Asian Conference on The Semantic Web, ASWC 2009 (pp. 332–346). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2012). Discovering concept coverings in ontologies of linked data sources. In P. Cudré-Mauroux, et al. (Eds.), International Semantic Web Conference (1) (Vol. 7649, pp. 427–443). Lecture notes in computer science. Springer.

    Google Scholar 

  • Pernelle, N. & Sais, F. (2011). LDM: Link discovery method for new resource integration. In M.-E. V. Zoé Lacroix & Edna Ruckhaus (Eds.), Fourth International Workshop on Resource Discovery, Heraklion, Grèce (Vol. 737, pp. 94–108).

    Google Scholar 

  • Rahm, E. (2011). Towards large-scale schema and ontology matching. In Z. Bellahsene, A. Bonifati & E. Rahm (Eds.), Schema Matching and Mapping (pp. 3–27). Springer.

    Google Scholar 

  • Reymonet, A., Thomas, J., & Aussenac-Gilles, N. (2007). Modelling ontological and terminological resources in OWL DL. In OntoLex 2007—Workshop at ISWC07, Busan, South-Korea

    Google Scholar 

  • Roche, C., Calberg-Challot, M., Damas, L., & Rouard, P. (2009). Ontoterminology—a new paradigm for terminology. In J. L. G. Dietz (Ed.), KEOD (pp. 321–326). INSTICC Press.

    Google Scholar 

  • Shvaiko, P., & Euzenat, J. (2013). Ontology matching: state of the art and future challenges. IEEE Transactions on Knowledge and Data Engineering, 25(1), 158–176.

    Article  Google Scholar 

  • Spiliopoulos, V., & Vouros, G. (2012). Synthesizing ontology alignment methods using the max-sum algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(5), 940–951.

    Article  Google Scholar 

  • Steyskal, S., & Polleres, A. (2013). Mix ‘n’ match: An alternative approach for combining ontology matchers. In R Meersman, H. Panetto, T. S. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. D. Leenheer & D. Dou (Eds.), On the Move to Meaningful Internet Systems: OTM 2013 Conferences - Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE 2013, Graz, Austria, September 9–13, 2013. Proceedings (Vol. 8185, pp. 555–563). Lecture notes in computer science. Springer.

    Google Scholar 

  • Stoilos, G., Stamou, G., & Kollias, S. (2005). A string metric for ontology alignment. In The Semantic Web—ISWC 2005 (pp. 624–637). Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hecht, T., Buche, P., Dibie, J., Ibanescu, L., dos Santos, C.T. (2017). Ontology Alignment Using Web Linked Ontologies as Background Knowledge. In: Guillet, F., Pinaud, B., Venturini, G. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 665. Springer, Cham. https://doi.org/10.1007/978-3-319-45763-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45763-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45762-8

  • Online ISBN: 978-3-319-45763-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics