Abstract
The most economical representation of a musical rhythm is as a binary sequence of symbols that represent sounds and silences, each of which have a duration of one unit of time. Such a representation is eminently suited to objective mathematical and computational analyses, while at the same time, and perhaps surprisingly, provides a rich enough structure to inform both music theory and music practice. A musical rhythm is considered to be “good” if it belongs to the repertoire of the musical tradition of some culture in the world, is used frequently as an ostinato or timeline, and has withstood the test of time. Here several simple deterministic algorithms for generating musical rhythms are reviewed and compared in terms of their computational complexity, applicability, and capability to capture “goodness.”
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hamilton, A.: Aesthetics and Music. Continuum International Publishing Group, London (2007)
Hoenig, F.: Defining computational aesthetics. In: Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.) Computational Aesthetics in Graphics, Visualization and Imaging, pp. 13–18 (2005)
Fishwick, P.: Aesthetic Computing. MIT Press (2006)
Birkhoff, G.D.: Aesthetic Measure. Harvard University Press, Cambridge (1933)
Boselie, F., Leeuwenberg, E.: Birkhoff revisited: beauty as a function of effect and means. Am. J. Psychol. 98(1), 1–39 (1985)
Garabedian, C.A.: Birkhoff on aesthetic measure. Bull. Am. Math. Soc. 40, 7–10 (1934)
Montano, U.: Explaining Beauty in Mathematics: An Aesthetic Theory of Mathematics. Springer, Switzerland (2014)
Spengler, O.: The Decline of the West. I. Knopf, New York (1926)
Zhang, K., Harrell, S., Ji, X.: Computational aesthetics: on the complexity of computer-generated paintings. Leonardo 45(3), 243–248 (2012)
Edwards, M.: Algorithmic composition: computational thinking in music. Commun. ACM 54(7), 58–67 (2011)
Pachet, F., Roy, P.: Musical harmonization with constraints: a survey. Constraints J. 6(1), 7–19 (2011)
Toussaint, G.T.: The rhythm that conquered the world: what makes a “good” rhythm good? Percussive Notes. November Issue, pp. 52–59 (2011)
Toussaint, G.T.: Generating “good” musical rhythms algorithmically. In: Proceedings of the 8th International Conference on Arts and Humanities, Honolulu, Hawaii, USA (2010)
Toussaint, G.T.: The Geometry of Musical Rhythm. Chapman-Hall-CRC Press (2013)
Harary, F.: Aesthetic tree patterns in graph theory. Leonardo 4(3), 227–231 (1971)
Ahmed, Y., Haider, M.: Beauty measuring system based on the Divine Ratio. In: Proceedings of the International Conference on User Science and Engineering, pp. 207–210. IEEE (2010)
Davis, S.T., Jahnke, J.C.: Unity and the golden section: rules for aesthetic choice? Am. J. Psychol. 104(2), 257–277 (1991)
Pallet, P.M., Link, S., Lee, K.: New “golden” ratios for facial beauty. Vision Res. 50(2), 149–154 (2010)
Rigau, J., Feixas, M., Sbert, M.: Conceptualizing Birkhoff? Aesthetic measure using Shannon entropy and Kolmogorov complexity. In: Cunningham, D.W., Meyer, G., Neumann, L. (eds.) Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association (2007)
Sinha, P., and Russell, R.: A perceptually-based comparison of image-similarity metrics. Perception 40 (2011)
Hedges, S.A.: Dice music in the eighteenth century. Music Lett. 59, 180–187
Xenakis, I., Kanach, S.: Formalized Music: Mathematics and Thought in Composition. Pendragon Press (1992)
Shinghal, R., Toussaint, G.T.: Experiments in text recognition with the modified Viterbi algorithm. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1, 184–193 (1979)
Shinghal, R., Toussaint, G.T.: The sensitivity of the modified Viterbi algorithm to the source statistics. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 181–185 (1980)
Paiement, J.-F., Grandvalet, Y., Bengio, S., Eck, D.: A distance model for rhythms. In: International Conference on Machine Learning, New York, USA, pp. 736–743 (2008)
Burton, A.R., Vladimirova, T.: Generation of musical sequences with genetic techniques. Comput. Music J. 23(4), 59–73 (1999)
Pachet, F.: Interacting with a musical learning system: The Continuator. In: Proceedings of the 2nd International Conference on Music and Artificial Intelligence, Edinburgh, Scotland, UK, September 12–14, pp. 119–132 (2002)
Horowitz, D.: Generating rhythms with genetic algorithms. In: Proceedings of the 12th National Conference of the American Association of Artificial Intelligence, Washington, USA, Seattle, p. 1459 (1994)
Maeda, Y., Kajihara, Y.: Rhythm generation method for automatic musical composition using genetic algorithm. In: IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–7 (2010)
Agawu, K.: Structural analysis or cultural analysis? Competing perspectives on the standard pattern of West African rhythm. J. Am. Musicol. Soc. 59(1), 1–46 (2006)
Pressing, J.: Cognitive isomorphisms in World Music: West Africa, the Balkans. Thailand and western tonality. Stud. Music 17, 38–61 (1983)
Rahn, J.: Asymmetrical ostinatos in Sub-Saharan music: time, pitch, and cycles reconsidered. In Theory Only 9(7), 23–37 (1987)
Toussaint, G.T.: Mathematical features for recognizing preference in Sub-Saharan African traditional rhythm timelines. In: Proceedings of 3rd Conference on Advances in Pattern Recognition, Bath, United Kingdom, pp. 18–27 (2005)
Thul, E., Toussaint, G.T.: A comparative phylogenetic analysis of African timelines and North Indian talas. In: Proceedings of 11th BRIDGES: Mathematics, Music, Art, Architecture, and Culture, pp. 187–194 (2008)
Guastavino, C., Toussaint, G.T., Gómez, F., Marandola, F., Absar, R.: Rhythmic similarity in flamenco music: comparing psychological and mathematical measures. In: Proceedings of 4th Conference on Interdisciplinary Musicology, Thessaloniki, Greece, pp. 76–77 (2008)
Hagoel, K.: The Art of Middle Eastern Rhythm. OR-TAV, Kfar Sava, Israel (2003)
Wright, O.: The Modal System of Arab and Persian Music AD 1250–1300. Oxford University Press, Oxford (1978)
Touma, H.H.: The Music of the Arabs. Amadeus Press, Portland, Oregon (1996)
Franklin, P.: The Euclidean algorithm. Am. Math. Mon. 63(9), 663–664 (1956)
Toussaint, G.T.: The Euclidean algorithm generates traditional musical rhythms. In: Proceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, Banff, Canada, pp. 47–56 (2005)
Toussaint, G.T.: The Euclidean algorithm generates traditional musical rhythms. Interalia Mag. 16 (2015) (Electronic publication: http://www.interaliamag.org)
Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35, 93–173 (1991)
Heath, T.L.: The Thirteen Books of Euclid’s Elements (2nd ed. [Facsimile. Original publication: Cambridge University Press, 1925] ed). Dover Publications, New York (1956)
Bjorklund, E.: A metric for measuring the evenness of timing system rep-rate patterns. Technical Note SNS-NOTE-CNTRL-100, Los Alamos National Laboratory, U.S.A. (2003)
Bjorklund, E.: The theory of rep-rate pattern generation in the SNS timing system. Technical Note SNS-NOTE-CNTRL-99, Los Alamos National Laboratory, U.S.A. (2003)
Butler, M.J.: Unlocking the Groove: Rhythm, Meter, and Musical Design in Electronic Dance Music. Indiana University Press, Bloomington and Indianapolis (2006)
Mills, S.: Healing Rhythms: The World of South Korea’s East Coast Hereditary Shamans. Ashgate, Aldershot, U.K. (2007)
Osborn, B.: Kid Algebra: Radiohead’s Euclidean and maximally even rhythms. Perspect. New Music 52(1), 81–105 (2014)
Morales, E.: The Latin Beat-The Rhythms and Roots of Latin Music from Bossa Nova to Salsa and Beyond. Da Capo Press, Cambridge, MA (2003)
Kubik, G.: Africa and the Blues. University of Mississippi Press, Jackson (1999)
Arom, S.: African Polyphony and Polyrhythm. Cambridge University Press, Cambridge, UK (1991)
Floyd Jr., S.A.: Black music in the circum-Caribbean. Am. Music 17(1), 1–38 (1999)
Evans, B.: Authentic Conga Rhythms. Belwin Mills Publishing Corporation, Miami (1966)
Sasso, L.: Drum Mechanics: Ableton Live Tips and Techniques. In: Sound on Sound (2014). http://www.soundonsound.com/sos/dec14/articles/live-tech-1214.htm. Accessed 5 April 2016
Albin, A., Weinberg, G., Egerstedt, M.: Musical abstractions in distributed multi-robot systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, pp. 451–458 (2012)
Post, O., Toussaint, G.T.: The edit distance as a measure of perceived rhythmic similarity. Empirical Musicol. Rev. 6 (2011)
Locke, D.: Drum Gahu: An Introduction to African Rhythm. White Cliffs Media, Tempe, AZ (1998)
Peñalosa, D.: The Clave Matrix; Afro-Cuban Rhythm: Its Principles and African Origins. Bembe Inc., Redway, CA (2009)
Masuda, T., Gonzales, R., Kwan, L., Nisbet, R.E.: Culture and aesthetic preference: comparing the attention to context of East Asians and Americans. Pers. Soc. Psychol. Bull. 34(9), 1260–1275 (2008)
Hannon, E.E., Soley, Ullal, S.: Rhythm perception: a cross-cultural comparison of American and Turkish listeners. J. Exp. Psychol.: Hum. Percept. Perform. Advance online publication (2012). doi:10.1037/a0027225
Patel, A.D.: Music, Language, and the Brain. Oxford University Press, Oxford (2008)
Wilcken, L.: The Drums of Vodou. White Cliffs Media, Tempe, AZ (1992)
Gómez, F., Khoury, I., Kienzle, J., McLeish, E., Melvin, A., Pérez-Fernández, R., Rappaport, D., Toussaint, G.T.: Mathematical models for binarization and ternarization of musical rhythms. In: BRIDGES: Mathematical Connections in Art, Music, and Science, San Sebastian, Spain, pp. 99–108 (2007)
Toussaint, G.T.: Modeling musical rhythm mutations with geometric quantization. In: Melnik, R. (ed.) Mathematical and Computational Modeling: With Applications in Natural and Social Sciences, Engineering, and the Arts, pp. 299–308. Wiley (2015)
Pérez-Fernández, R.: La Binarización de los Ritmos Ternarios Africanos en América Latina. Casa de las Américas, Havana (1986)
Pérez-Fernández, R.: El mito del carácter invariable de las lineas temporales. Transcult. Music Rev. 11 (2007)
Liu, Y., Toussaint, G.T.: Mathematical notation, representation, and visualization of musical rhythm: a comparative perspective. Int. J. Mach. Learn. Comput. 2 (2012)
Toussaint, G.T.: A comparison of rhythmic dissimilarity measures. FORMA 21 (2006)
Acknowledgments
This research was supported by a grant from the Provost’s Office of New York University Abu Dhabi, through the Faculty of Science, in Abu Dhabi, United Arab Emirates.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Toussaint, G.T. (2017). Simple Deterministic Algorithms for Generating “Good” Musical Rhythms. In: Adamatzky, A. (eds) Emergent Computation . Emergence, Complexity and Computation, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-46376-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-46376-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46375-9
Online ISBN: 978-3-319-46376-6
eBook Packages: EngineeringEngineering (R0)