Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Propositions for Opinion Mining

  • Conference paper
  • First Online:
Semantic Web Challenges (SemWebEval 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 641))

Included in the following conference series:

Abstract

With different social media and commercial platforms, users express their opinion about products in a textual form. Automatically extracting the polarity (i.e. whether the opinion is positive or negative) of a user can be useful for both actors: the online platform incorporating the feedback to improve their product as well as the client who might get recommendations according to his or her preferences. Different approaches for tackling the problem, have been suggested mainly using syntactic features. The “Challenge on Semantic Sentiment Analysis” aims to go beyond the word-level analysis by using semantic information. In this paper we propose a novel approach by employing the semantic information of grammatical unit called preposition. We try to drive the target of the review from the summary information, which serves as an input to identify the proposition in it. Our implementation relies on the hypothesis that the proposition expressing the target of the summary, usually containing the main polarity information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_22

    Chapter  Google Scholar 

  2. Chung, J.K.-C., Wu, C.-E., Tsai, R.T.-H.: Polarity detection of online reviews using sentiment concepts: NCU IISR Team at ESWC-14 challenge on concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 53–58. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_7

    Google Scholar 

  3. Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 355–366. ACM, New York (2013). http://doi.acm.org/10.1145/2488388.2488420

  4. Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), European Language Resources Association (ELRA), Paris, France, May 2016

    Google Scholar 

  5. Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_2

    Google Scholar 

  6. Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, LREC06, pp. 417–422 (2006)

    Google Scholar 

  7. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Inc, P., Bethard, S.J., Mcclosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  8. Schouten, K., Frasincar, F.: The Benefit of Concept-Based Features for Sentiment Analysis. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 223–233. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_19

    Chapter  Google Scholar 

Download references

Acknowledgment

This work is funded by the KIRAS program of the Austrian Research Promotion Agency (FFG) (project number 840824). The Know-Center is funded within the Austrian COMET Program under the auspices of the Austrian Ministry of Transport, Innovation and Technology, the Austrian Ministry of Economics and Labour and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andi Rexha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rexha, A., Kröll, M., Dragoni, M., Kern, R. (2016). Exploiting Propositions for Opinion Mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-46565-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46565-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46564-7

  • Online ISBN: 978-3-319-46565-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics