Abstract
With different social media and commercial platforms, users express their opinion about products in a textual form. Automatically extracting the polarity (i.e. whether the opinion is positive or negative) of a user can be useful for both actors: the online platform incorporating the feedback to improve their product as well as the client who might get recommendations according to his or her preferences. Different approaches for tackling the problem, have been suggested mainly using syntactic features. The “Challenge on Semantic Sentiment Analysis” aims to go beyond the word-level analysis by using semantic information. In this paper we propose a novel approach by employing the semantic information of grammatical unit called preposition. We try to drive the target of the review from the summary information, which serves as an input to identify the proposition in it. Our implementation relies on the hypothesis that the proposition expressing the target of the summary, usually containing the main polarity information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Palmero Aprosio, A., Corcoglioniti, F., Dragoni, M., Rospocher, M.: Supervised opinion frames detection with RAID. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 251–263. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_22
Chung, J.K.-C., Wu, C.-E., Tsai, R.T.-H.: Polarity detection of online reviews using sentiment concepts: NCU IISR Team at ESWC-14 challenge on concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 53–58. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_7
Del Corro, L., Gemulla, R.: Clausie: clause-based open information extraction. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 355–366. ACM, New York (2013). http://doi.acm.org/10.1145/2488388.2488420
Dragoni, M., Tettamanzi, A., da Costa Pereira, C.: Dranziera: an evaluation protocol for multi-domain opinion mining. In: Chair, N.C.C., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), European Language Resources Association (ELRA), Paris, France, May 2016
Dragoni, M., Tettamanzi, A.G.B., da Costa Pereira, C.: A fuzzy system for concept-level sentiment analysis. In: Presutti, V., et al. (eds.) SemWebEval 2014. CCIS, vol. 475, pp. 21–27. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12024-9_2
Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of the 5th Conference on Language Resources and Evaluation, LREC06, pp. 417–422 (2006)
Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Inc, P., Bethard, S.J., Mcclosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)
Schouten, K., Frasincar, F.: The Benefit of Concept-Based Features for Sentiment Analysis. In: Gandon, F., et al. (eds.) SemWebEval 2015. CCIS, vol. 548, pp. 223–233. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25518-7_19
Acknowledgment
This work is funded by the KIRAS program of the Austrian Research Promotion Agency (FFG) (project number 840824). The Know-Center is funded within the Austrian COMET Program under the auspices of the Austrian Ministry of Transport, Innovation and Technology, the Austrian Ministry of Economics and Labour and by the State of Styria. COMET is managed by the Austrian Research Promotion Agency FFG.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Rexha, A., Kröll, M., Dragoni, M., Kern, R. (2016). Exploiting Propositions for Opinion Mining. In: Sack, H., Dietze, S., Tordai, A., Lange, C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. https://doi.org/10.1007/978-3-319-46565-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-46565-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46564-7
Online ISBN: 978-3-319-46565-4
eBook Packages: Computer ScienceComputer Science (R0)