Abstract
Group signatures are a class of digital signatures with enhanced privacy. By using this type of signature, a user can sign a message on behalf of a specific group without revealing his identity, but in the case of a dispute, an authority can expose the identity of the signer. However, it is not always the case that we need to know the specific identity of the signature. In this paper, we propose the notion of deniable group signature, where the authority can issue a proof showing that the specified user is NOT the signer of the signature, without revealing the actual signer. We point out that existing efficient non-interactive zero-knowledge proof systems cannot be straightforwardly applied to prove such a statement. We circumvent this problem by giving a fairly practical construction through extending the Groth group signature scheme (ASIACRYPT 2007). In particular, a denial proof in our scheme consists of 96 group elements, which is about twice the size of a signature in the Groth scheme. The proposed scheme is provably secure under the same assumptions as those of the Groth scheme.
Y. Sakai—This author is supported by a JSPS Fellowship for Young Scientists.
K. Tanaka—A part of this work was supported by a grant of I-System Co. Ltd., NTT Secure Platform Laboratories, Nomura Research Institute, Input Output Hongkong, and MEXT/JSPS KAKENHI 16H01705.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Recall that we exclude the case that an adversary requests a denial proof of either \(i_0\) or \(i_1\) for the challenge signature, since this trivially breaks the anonymity. (See the definition of DOpen oracle above.).
- 2.
Libert, Peters, and Yung (LPY) [23] proposed a short dynamic group signature scheme in the standard model under simple assumptions. Since the scheme is secure in the sense of the Kiayias-Yung model [17] and the model does not require that the opener produces the opening proof, we cannot directly employ our technique to the LPY scheme. Therefore, we leave it as a future work.
References
Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anonymous tags for traceable signatures. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 183–200. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21554-4_11
Attrapadung, N., Emura, K., Hanaoka, G., Sakai, Y.: A Revocable Group Signature Scheme from Identity-Based Revocation Techniques: Achieving Constant-Size Revocation List. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 419–437. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07536-5_25
Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_11
Blazy, O., Chevalier, C., Vergnaud, D.: Non-interactive zero-knowledge proofs of non-membership. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 145–164. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16715-2_8
Blazy, O., Derler, D., Slamanig, D., Spreitzer, R.: Non-interactive plaintext (In-)Equality proofs and group signatures with verifiable controllable linkability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 127–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29485-8_8
Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)
Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_3
Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM-CCS, pp. 132–145 (2004)
Damgård, I., Triandopoulos, N.: Supporting non-membership proofs with bilinear-map accumulators. IACR Cryptology ePrint Archive 2008, 538 (2008)
Desmoulins, N., Lescuyer, R., Sanders, O., Traoré, J.: Direct anonymous attestations with dependent basename opening. In: Gritzalis, D., Kiayias, A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 206–221. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12280-9_14
Galbraith, S.D., Hess, F., Vercauteren, F.: Aspects of pairing inversion. IEEE Trans. Inf. Theor. 54(12), 5719–5728 (2008)
Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76900-2_10
Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_24
Ishida, A., Emura, K., Hanaoka, G., Sakai, Y., Tanaka, K.: Group signature with deniability: how to disavow a signature. IACR Cryptology ePrint Archive 2015, 43 (2015)
Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_34
Kiayias, A., Yung, M.: Secure scalable group signature with dynamic joins and separable authorities. IJSN 1(1/2), 24–45 (2006)
Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). doi:10.1007/11681878_30
Komano, Y., Ohta, K., Shimbo, A., Kawamura, S.: Toward the Fair Anonymous Signatures: Deniable Ring Signatures. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 174–191. Springer, Heidelberg (2006). doi:10.1007/11605805_12
Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72738-5_17
Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revocation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 571–589. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_34
Libert, B., Peters, T., Yung, M.: Scalable group signatures with revocation. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 609–627. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4_36
Libert, B., Peters, T., Yung, M.: Short group signatures via structure-preserving signatures: standard model security from simple assumptions. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 296–316. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_15
Lyuu, Y.-D., Wu, M.-L.: Convertible group undeniable signatures. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 48–61. Springer, Heidelberg (2003). doi:10.1007/3-540-36552-4_4
Nakanishi, T., Funabiki, N.: Revocable group signatures with compact revocation list using accumulators. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 435–451. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12160-4_26
Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30574-3_19
Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36334-4_18
Sakai, Y., Schuldt, J.C.N., Emura, K., Hanaoka, G., Ohta, K.: On the Security of Dynamic Group Signatures: Preventing Signature Hijacking. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 715–732. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8_42
Schuldt, J.C.N., Matsuura, K.: Efficient convertible undeniable signatures with delegatable verification. IEICE Trans. 94(A(1)), 71–83 (2011)
Zeng, S., Jiang, S.: A new framework for conditionally anonymous ring signature. Comput. J. 57(4), 567–578 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Ishida, A., Emura, K., Hanaoka, G., Sakai, Y., Tanaka, K. (2016). Group Signature with Deniability: How to Disavow a Signature. In: Foresti, S., Persiano, G. (eds) Cryptology and Network Security. CANS 2016. Lecture Notes in Computer Science(), vol 10052. Springer, Cham. https://doi.org/10.1007/978-3-319-48965-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-48965-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-48964-3
Online ISBN: 978-3-319-48965-0
eBook Packages: Computer ScienceComputer Science (R0)