Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Specification Theory of Real-Time Processes

  • Chapter
  • First Online:
Concurrency, Security, and Puzzles

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10160))

Abstract

This paper presents an assume-guarantee specification theory (aka interface theory fromĀ [11]) for modular synthesis and verification of real-time processes with critical timing constraints. Four operations, i.e. conjunction, disjunction, parallel and quotient, are defined over specifications, drawing inspirations from classic specification theories like refinement calculusĀ [4, 19]. We show that a congruence (or pre-congruence) characterised by a trace-based semanticsĀ [14] captures exactly the notion of substitutivity (or refinement) between specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the existence of incompatibility errors does not mean that the composed system is un-usable; an environment can still usefully exploit the system by only utilising the part of the system that is free of the incompatibility errors, as has been well explained inĀ [11].

  2. 2.

    It were Carroll Morgan and Joseph M. Morris who first added miracle to refinement calculus.

  3. 3.

    Our timed framework originally appeared inĀ [9]. However, the version presented here contains important technical extension as well as presentational improvements.

  4. 4.

    Invariants and guards on output actions are constraints on the system (aka guarantees) whereas co-invariants and guards on input actions are constraints on the environment (aka assumptions).

  5. 5.

    \(\mathcal {P}\) is time-additive providing \(p \xrightarrow {d_1+d_2} s'\) iff \(p \xrightarrow {d_1} s\) and \(s \xrightarrow {d_2} s'\) for some \(s \in S\).

  6. 6.

    Note that invariant and co-invariant are downward-closed. Thus, the only way to violate them is to exceed their upper bounds.

  7. 7.

    One further case missing above is that, for an action transition, there is possibility that its guard is respected but the invariant/co-invariant of its destination (say l) is violated. In such situation, a state (l,Ā t) is treated (1) as \(\top \) if t violates the invariant in location l and (2) as \(\bot \) if t violates the co-invariant in l while the invariant holds.

  8. 8.

    For \(i \in \{0,1\}\) and \(p_i=(l_i, t_i)\), \(p_0 \times p_1 = ((l_0,l_1),t_0 \uplus t_1)\) (t0 and \(t_1\) are clock-disjoint).

  9. 9.

    Containment of \(\rightarrow _0 \cup \rightarrow _1\) is not required for parallel composition, but is necessary for conjunction and disjunction.

  10. 10.

    The technique was inspired by a discussion with Roscoe on angelic choice in CSP.

  11. 11.

    Note that the above definition exploits the fact that the addition or removal of false-guarded transitions to AT will not change the semantics of the automata.

  12. 12.

    The modified determinisation procedure first appeared in the Definition 4.2 ofĀ [26], which is for the untimed case.

  13. 13.

    We say an acyclic TIOTS is a tree if (1) there does not exist a pair of transitions in the form of \(p \xrightarrow {a} p''\) and \(p' \xrightarrow {d} p''\), (2) \(p \xrightarrow {a} p'' \wedge p' \xrightarrow {b} p''\) implies \(p=p'\) and \(a=b\) and (3) \(p \xrightarrow {d} p'' \wedge p' \xrightarrow {d} p''\) implies \(p=p'\).

  14. 14.

    For the former, \(\mathcal {G}_s\) generates exactly a time interval (0,Ā d] of delays from p, after which \(\mathcal {G}_s\) arrives at another plain state with a enabled. For the latter, an infinite time interval \((0,\infty )\) of delays are enabled at p. The delays either all lead to plain states or \((0,\infty )\) can be further partitioned into two intervals s.t. the delays in the first interval lead to plain states while those of the second lead to \(\top \) or \(\bot \).

  15. 15.

    We choose not to call it a winning strategy as it serves additional purpose for our paper.

  16. 16.

    Given a \(\top /\bot \) complete interface, we say a plain state p is an auto-\(\top \) iff \(p \xrightarrow {a} \top \) for some \(a \in I\); a plain state p is a semi-\(\top \) iff (1) all output transitions in p or any of its time-passing successors lead to the \(\top \) state, and (2) there exists \(d \in \mathbb {R}^{>0}\) s.t. \(p \xrightarrow {d} \top \).

  17. 17.

    We omit the two operators in this paper due to space limitation.

  18. 18.

    That is, they can distinguish the \(\bot \) state from the \(\bot \)-winning states by stopping time immediately.

  19. 19.

    It is easy to verify that realisable specifications are closed under \(\parallel \) defined in Sect.Ā 3 since \(\parallel \) preserves auto-\(\top \) and semi-\(\top \) freedom.

  20. 20.

    With the extension, blocked synchronisation, i.e. an action being enabled on one process but not so on the other, becomes possible.

  21. 21.

    Bertrand MeyerĀ [18] and Ralph BackĀ [4] first coined the terminology of contract in the context of programming languages.

  22. 22.

    [12, 13] focuses on the definition of one operator, parallel composition, which is of considerable complexity.

  23. 23.

    The mirror-based definition of quotient (for the untimed case) was first presented by Verhoeff as his Factorisation TheoremĀ [24].

  24. 24.

    Composition of untimed specifications will not generated new unrealisable behaviours.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183ā€“235 (1994)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  2. Armstrong, P.J., Lowe, G., Ouaknine, J., Roscoe, A.W.: Model checking timed CSP. In: A Festschrift on the Occasion of H. Barringerā€™s 60th Birthday (2014)

    Google ScholarĀ 

  3. Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: IFAC Symposium on System Structure and Control, Elsevier (1998)

    Google ScholarĀ 

  4. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer, New York (1998)

    BookĀ  MATHĀ  Google ScholarĀ 

  5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts for systems design. Technical report RR-8147, S4 team, INRIA, November 2012

    Google ScholarĀ 

  6. Bertrand, N., Stainer, A., JĆ©ron, T., Krichen, M.: A game approach to determinize timed automata. In: Hofmann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 245ā€“259. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19805-2_17

    ChapterĀ  Google ScholarĀ 

  7. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66ā€“80. Springer, Heidelberg (2005). doi:10.1007/11539452_9

    ChapterĀ  Google ScholarĀ 

  8. Chilton, C., Jonsson, B., Kwiatkowska, M.: Compositional assume-guarantee reasoning for input/output component theories. Sci. Comput. Program. 91, 115ā€“137 (2014). Part A

    ArticleĀ  Google ScholarĀ 

  9. Chilton, C., Kwiatkowska, M., Wang, X.: Revisiting timed specification theories: a linear-time perspective. In: FORMATS 2012 (2012)

    Google ScholarĀ 

  10. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: HSCC 2010 (2010)

    Google ScholarĀ 

  11. de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC/FSE 2001 (2001)

    Google ScholarĀ 

  12. de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: EMSOFT 2002, vol. 2491, pp. 108ā€“122 (2002)

    Google ScholarĀ 

  13. de Alfaro, L., Stoelinga, M.: Interfaces: a game-theoretic framework for reasoning about component-based systems. Electron. Notes Theoret. Comput. Sci. 97, 3ā€“23 (2004)

    ArticleĀ  Google ScholarĀ 

  14. Dill, D.L.: Trace theory for automatic hierarchical verification of speed-independent circuits. In: ACM Distinguished Dissertations. MIT Press (1989)

    Google ScholarĀ 

  15. Ebergen, J.C.: A technique to design delay-insensitive VLSI circuits. Technical report CS-R8622, Centrum voor Wiskunde en Informatica, June 1986

    Google ScholarĀ 

  16. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined. In: Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187ā€“196. Springer, Heidelberg (1986). doi:10.1007/3-540-16442-1_14

    ChapterĀ  Google ScholarĀ 

  17. Hoare, C.A.R., He, J., Sanders, J.W.: Prespecification in data refinement. Inf. Process. Lett. 25(2), 71ā€“76 (1987)

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  18. Meyer, B.: Design by contract. In: Advances in Object-Oriented Software Engineering. Prentice Hall (1991)

    Google ScholarĀ 

  19. Morgan, C.C.: Programming from Specifications. Prentice Hall International Series in Computer Science, 2nd edn. Prentice Hall, UK (1994)

    MATHĀ  Google ScholarĀ 

  20. Negulescu, R.: Process spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 199ā€“213. Springer, Heidelberg (2000). doi:10.1007/3-540-44618-4_16

    ChapterĀ  Google ScholarĀ 

  21. Reed, G.M., Roscoe, A.W., Schneider, S.A.: CSP and Timewise Refinement, pp. 258ā€“280. Springer, London (1991)

    Google ScholarĀ 

  22. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, UK (1998)

    Google ScholarĀ 

  23. van de Snepscheut, J.L.A.: Trace Theory and VLSJ Design. LNCS, vol. 200. Springer, Heidelberg (1985)

    BookĀ  MATHĀ  Google ScholarĀ 

  24. Verhoeff, T.: A Theory of Delay-Insensitive Systems. Ph.D. thesis, Dept. of Math. and C.S., Eindhoven University of Technology, May 1994

    Google ScholarĀ 

  25. Wang, X.: Maximal confluent processes. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 188ā€“207. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31131-4_11

    ChapterĀ  Google ScholarĀ 

  26. Wang, X., Kwiatkowska, M.Z.: On process-algebraic verification of asynchronous circuits. Fundam. Inform. 80(1ā€“3), 283ā€“310 (2007)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Acknowledgments

We benefit from discussions with Prof. David Dill and Prof. Jeff Sanders on timed extension of trace theory and refinement calculus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chilton, C., Kwiatkowska, M., Moller, F., Wang, X. (2017). A Specification Theory of Real-Time Processes. In: Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds) Concurrency, Security, and Puzzles. Lecture Notes in Computer Science(), vol 10160. Springer, Cham. https://doi.org/10.1007/978-3-319-51046-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51046-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51045-3

  • Online ISBN: 978-3-319-51046-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics