Abstract
In P systems working in the set derivation mode, even in the maximally parallel derivation mode, rules are only applied in at most one copy in each derivation step. We also consider the set mode in the cases of taking those sets of rules with the maximal number of applicable rules or with affecting the maximal number of objects. For many variants of P systems, the computational completeness proofs even literally still hold true for these new set derivation modes. On the other hand, we obtain new results for P systems using target selection for the rules to be chosen together with these set derivation modes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alhazov, A., Freund, R.: P systems with toxic objects. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 99–125. Springer, Cham (2014). doi:10.1007/978-3-319-14370-5_7
Alhazov, A., Freund, R.: Small catalytic P systems. In: Dinneen, M.J. (ed.) Proceedings of the Workshop on Membrane Computing 2015 (WMC2015), (Satellite workshop of UCNC2015), CDMTCS Research Report Series, vol. CDMTCS-487, pp. 1–16. Centre for Discrete Mathematics and Theoretical Computer, Science Department of Computer Science, University of Auckland, Auckland, New Zealand (2015), August 2015
Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Y., Verlan, S.: Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 112–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36751-9_9
Alhazov, A., Freund, R., Verlan, S.: Computational completeness of P systems using maximal variants of the set derivation mode. In: Proceedings 14th Brainstorming Week on Membrane Computing, Sevilla, February 1–5, 2016 (2016)
Burkhard, H.: Ordered firing in Petri nets. Elektronische Informationsverarbeitung und Kybernetik 17(2/3), 71–86 (1981)
Ciobanu, G., Marcus, S., Păun, G.: New strategies of using the rules of a P system in a maximal way. Power and Complexity. Rom. J. Inf. Sci. Technol. 12(2), 21–37 (2009)
Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)
Freund, R., Păun, G.: How to obtain computational completeness in P systems with one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS, vol. 128, pp. 47–61 (2013)
Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77312-2_17
Frisco, P., Govan, G.: P systems with active membranes operating under minimal parallelism. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 165–181. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28024-5_12
Krithivasan, K., Păun, Gh., Ramanujan, A.: On controlled P systems. In: Valencia-Cabrera, L., García-Quismondo, M., Macías-Ramos, L., Martínez-del-Amor, M., Păun, Gh., Riscos-Núñez, A. (eds.) Proceedings 11th Brainstorming Week on Membrane Computing, Sevilla, February 4–8, 2013, pp. 137–151. Fénix Editora, Sevilla (2013)
Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)
Pan, L., Păun, G., Song, B.: Flat maximal parallelism in P systems with promoters. Theoret. Comput. Sci. 623, 83–91 (2016)
Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)
Sburlan, D.: Further results on P systems with promoters/inhibitors. Int. J. Found. Comput. Sci. 17(1), 205–221 (2006)
Sosík, P., Langer, M.: Small (purely) catalytic P systems simulating register machines. Theoret. Comput. Sci. 623, 65–74 (2015)
The P Systems Website: http://ppage.psystems.eu, http://ppage.psystems.eu
Verlan, S., Quiros, J.: Fast hardware implementations of P systems. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 404–423. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36751-9_27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Alhazov, A., Freund, R., Verlan, S. (2017). P Systems Working in Maximal Variants of the Set Derivation Mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-54072-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-54071-9
Online ISBN: 978-3-319-54072-6
eBook Packages: Computer ScienceComputer Science (R0)