Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

P Systems Working in Maximal Variants of the Set Derivation Mode

  • Conference paper
  • First Online:
Membrane Computing (CMC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10105))

Included in the following conference series:

  • 441 Accesses

Abstract

In P systems working in the set derivation mode, even in the maximally parallel derivation mode, rules are only applied in at most one copy in each derivation step. We also consider the set mode in the cases of taking those sets of rules with the maximal number of applicable rules or with affecting the maximal number of objects. For many variants of P systems, the computational completeness proofs even literally still hold true for these new set derivation modes. On the other hand, we obtain new results for P systems using target selection for the rules to be chosen together with these set derivation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alhazov, A., Freund, R.: P systems with toxic objects. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 99–125. Springer, Cham (2014). doi:10.1007/978-3-319-14370-5_7

    Chapter  Google Scholar 

  2. Alhazov, A., Freund, R.: Small catalytic P systems. In: Dinneen, M.J. (ed.) Proceedings of the Workshop on Membrane Computing 2015 (WMC2015), (Satellite workshop of UCNC2015), CDMTCS Research Report Series, vol. CDMTCS-487, pp. 1–16. Centre for Discrete Mathematics and Theoretical Computer, Science Department of Computer Science, University of Auckland, Auckland, New Zealand (2015), August 2015

    Google Scholar 

  3. Alhazov, A., Freund, R., Heikenwälder, H., Oswald, M., Rogozhin, Y., Verlan, S.: Sequential P systems with regular control. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 112–127. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36751-9_9

    Chapter  Google Scholar 

  4. Alhazov, A., Freund, R., Verlan, S.: Computational completeness of P systems using maximal variants of the set derivation mode. In: Proceedings 14th Brainstorming Week on Membrane Computing, Sevilla, February 1–5, 2016 (2016)

    Google Scholar 

  5. Burkhard, H.: Ordered firing in Petri nets. Elektronische Informationsverarbeitung und Kybernetik 17(2/3), 71–86 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Ciobanu, G., Marcus, S., Păun, G.: New strategies of using the rules of a P system in a maximal way. Power and Complexity. Rom. J. Inf. Sci. Technol. 12(2), 21–37 (2009)

    Google Scholar 

  7. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  8. Freund, R., Păun, G.: How to obtain computational completeness in P systems with one catalyst. In: Neary, T., Cook, M. (eds.) Proceedings Machines, Computations and Universality 2013, MCU 2013, Zürich, Switzerland, September 9–11, 2013. EPTCS, vol. 128, pp. 47–61 (2013)

    Google Scholar 

  9. Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77312-2_17

    Chapter  Google Scholar 

  10. Frisco, P., Govan, G.: P systems with active membranes operating under minimal parallelism. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 165–181. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28024-5_12

    Chapter  Google Scholar 

  11. Krithivasan, K., Păun, Gh., Ramanujan, A.: On controlled P systems. In: Valencia-Cabrera, L., García-Quismondo, M., Macías-Ramos, L., Martínez-del-Amor, M., Păun, Gh., Riscos-Núñez, A. (eds.) Proceedings 11th Brainstorming Week on Membrane Computing, Sevilla, February 4–8, 2013, pp. 137–151. Fénix Editora, Sevilla (2013)

    Google Scholar 

  12. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  13. Pan, L., Păun, G., Song, B.: Flat maximal parallelism in P systems with promoters. Theoret. Comput. Sci. 623, 83–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, New York (2010)

    MATH  Google Scholar 

  15. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1–3. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  16. Sburlan, D.: Further results on P systems with promoters/inhibitors. Int. J. Found. Comput. Sci. 17(1), 205–221 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sosík, P., Langer, M.: Small (purely) catalytic P systems simulating register machines. Theoret. Comput. Sci. 623, 65–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. The P Systems Website: http://ppage.psystems.eu, http://ppage.psystems.eu

  19. Verlan, S., Quiros, J.: Fast hardware implementations of P systems. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 404–423. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36751-9_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alhazov, A., Freund, R., Verlan, S. (2017). P Systems Working in Maximal Variants of the Set Derivation Mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2016. Lecture Notes in Computer Science(), vol 10105. Springer, Cham. https://doi.org/10.1007/978-3-319-54072-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54072-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54071-9

  • Online ISBN: 978-3-319-54072-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics