Abstract
Computer-interpretable implementations of clinical guidelines (CIGs) add knowledge that is outside the scope of the original guideline. This knowledge can customize CIGs to patients’ psycho-social context or address comorbidities that are common in the local population, potentially increasing standardization of care and patient compliance. We developed a two-layered contextual decision-model based on the PROforma CIG formalism that separates the primary knowledge of the original guideline from secondary arguments for or against specific recommendations. In this paper we show how constraint logic programming can be used to verify the layered model for two essential properties: (1) secondary arguments do not rule in recommendations that are ruled out in the original guideline, and (2) the CIG is complete in providing recommendation(s) for any combination of patient data items considered. We demonstrate our approach when applied to the asthma domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Institute of Medicine: Clinical Practice Guidelines We Can Trust (2013)
Fux, A., Peleg, M., Soffer, P.: How does personal information affect clinical decision making? Eliciting categories of personal context and effects. In: AMIA Annual Symposium, p. 1741 (2012)
Quinn, C.C., Gruber-Baldini, A.L., Shardell, M., Weed, K., Clough, S.S., Peeples, M., Terrin, M., Bronich-Hall, L., Barr, E., Lender, D.: Mobile diabetes intervention study: testing a personalized treatment/behavioral communication intervention for blood glucose control. Contemp. Clin. Trials 30(4), 334–346 (2009)
Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)
Riano, D., Real, F., Lopez-Vallverdu, J.A., Campana, F., Ercolani, S., Mecocci, P., Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients. J. Biomed. Inform. 45(3), 429–446 (2012)
Grandi, F.: Dynamic class hierarchy management for multi-version ontology-based personalization. J. Comput. Syst. Sci. 82(1 Part A), 69–90 (2016)
Grandi, F., Mandreoli, F., Martoglia, R.: Efficient management of multi-version clinical guidelines. J. Biomed. Inform. 45(6), 1120–1136 (2012)
Michalowski, M., Wilk, S., Rosu, D., Kezadri, M., Michalowski, W., Carrier, M.: Expanding a first-order logic mitigation framework to handle multimorbid patient preferences. In: AMIA Annual Symposium Proceedings 2015, pp. 895–904 (2015)
Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46(4), 744–763 (2013)
Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)
Perez, B., Porres, I.: Authoring and verification of clinical guidelines: a model driven approach. J. Biomed. Inform. 43(4), 520–536 (2010)
ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving medical protocols by formal methods. Artif. Intell. Med. 36(3), 193–209 (2006)
Halpern, J.Y., Vardi, M.Y.: Model checking vs. theorem proving: a manifesto. In: Vladimir, L. (ed.) Artificial Intelligence and Mathematical Theory of Computation, pp. 151–176. Academic Press Professional, Inc., Cambridge (1991)
Dechter, R.: Constraint Processing. MIT Press, Cambridge (1989)
Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38
British Thoracic Society and Scottish Intercollegiate Guidelines Network, QRG 141 - British Guideline on the Management of Asthma (2014)
Israel Medical Association: Clinical Practice Guidelines for Asthma Management. Harefuah (2000). (in Hebrew)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wilk, S., Fux, A., Michalowski, M., Peleg, M., Soffer, P. (2017). Using Constraint Logic Programming for the Verification of Customized Decision Models for Clinical Guidelines. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds) Artificial Intelligence in Medicine. AIME 2017. Lecture Notes in Computer Science(), vol 10259. Springer, Cham. https://doi.org/10.1007/978-3-319-59758-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-59758-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59757-7
Online ISBN: 978-3-319-59758-4
eBook Packages: Computer ScienceComputer Science (R0)