Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 357))

  • 791 Accesses

Abstract

Often in a group of decision makers there is a considerable variability in the scores that decision makers assign to the alternatives. In this paper we represent this variability with fuzzy numbers. Moreover we present an algorithm for the achievement of consensus based on suitable fuzzy numbers, on preorder and order relations in sets of fuzzy numbers, and on a procedure to decrease the spreads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arrow KJ (1951) Social choice and individual value. Yale University Press, New Haven

    MATH  Google Scholar 

  2. Banon G (1981) Distinction between several subsets of fuzzy measures. Int J Fuzzy Sets Syst 5:291–305

    Article  MathSciNet  MATH  Google Scholar 

  3. Boudon R (1979) La logique du social, Hachette, Paris

    Google Scholar 

  4. Carlsson C, Ehrenberg D, Eklund P, Fedrizzi M, Gustafsson P, Lindholm P, Merkurieva G, Riissanen T, Ventre AGS (1992) Consensus in distributed soft environments. Eur J Oper Res 61:165–185

    Article  Google Scholar 

  5. Coletti G, Scozzafava R (2002) Probabilistic logic in a coherent setting. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  6. de Finetti B (1974) Theory of probability. J. Wiley, New York

    MATH  Google Scholar 

  7. Delli Rocili L, Maturo A, (2013) Teaching mathematics to children: social aspects, psychological problems and decision making models. In: Soitu, Gavriluta, Maturo (eds) Interdisciplinary approaches in social sciences, Editura Universitatii A.I. Cuza, Iasi, Romania

    Google Scholar 

  8. Dubois D, Prade H (1980) Fuzzy set and systems. Academic Press, New York

    MATH  Google Scholar 

  9. Dubois D, Prade H (1988) Fuzzy numbers: an overview. In: Bedzek JC (ed) Analysis of fuzzy information, vol 2 CRC-Press, Boca Raton, pp 3–39

    Google Scholar 

  10. Ehrenberg D, Eklund P, Fedrizzi M, Ventre AGS (1989) Consensus in distributed soft environments. Rep Comput Sci Math Åbo 88:1–24

    Google Scholar 

  11. Eklund P, Rusinowska A, De Swart H (2007) Consensus reaching in committees. Eur J Oper Res 178:185–193

    Google Scholar 

  12. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic. Prentice Hall, Jersey

    Google Scholar 

  13. Lindley DV (1985) Making decisions. Wiley, London

    Google Scholar 

  14. Luce RD, Raiffa H (1957) Games and decisions. Wiley, New York

    MATH  Google Scholar 

  15. March JG (1994) A primer on decision making: how decisions happen. The Free Press, New York

    Google Scholar 

  16. Mares M (1997) Weak arithmetic on fuzzy numbers. Fuzzy Sets Syst 91(2):143–154

    Article  MathSciNet  MATH  Google Scholar 

  17. Mares M (2001) Fuzzy cooperative games. Springer, New York

    Book  MATH  Google Scholar 

  18. Maturo A (2009) Alternative fuzzy operations and applications to social sciences. Int J Intell Syst 24:1243–1264

    Article  MATH  Google Scholar 

  19. Maturo A (2009) Coherent conditional previsions and geometric hypergroupoids. Fuzzy Sets, Rough Sets, Multivalued Oper Appl 1(1):51–62

    Google Scholar 

  20. Maturo A (2009) On some structures of fuzzy numbers. Iran J Fuzzy Syst 6(4):49–59

    MathSciNet  MATH  Google Scholar 

  21. Maturo A, Ventre AGS (2008) Models for consensus in multiperson decision making. In: NAFIPS 2008 conference proceedings. Regular Papers 50014. IEEE Press, New York

    Google Scholar 

  22. Maturo A, Ventre AGS (2009) An application of the analytic hierarchy process to enhancing consensus in multiagent decision making. In: Proceeding of the international symposium on the analytic hierarchy process for multicriteria decision making, July 29–August 1, 2009, paper 48. University of Pittsburg, Pittsburgh, pp 1–12

    Google Scholar 

  23. Maturo A, Ventre AGS (2009) Aggregation and consensus in multi objective and multi person decision making. Int J Uncertain Fuzziness Knowl-Based Syst 17(4):491–499

    Article  MATH  Google Scholar 

  24. Maturo A, Ventre A (2009) Multipersonal decision making, consensus and associated hyperstructures. In: Proceeding of AHA 2008. University of Defence, Brno, pp 241–250

    Google Scholar 

  25. Maturo A, Squillante M, Ventre AGS (2006) Consistency for assessments of uncertainty evaluations in non-additive settings. In: Amenta P, D’Ambra L, Squillante M, Ventre AGS (eds) Metodi, modelli e tecnologie dell’informazione a supporto delle decisioni. Franco Angeli, Milano, pp 75–88

    Google Scholar 

  26. Maturo A, Squillante M, Ventre AGS (2006) Consistency for nonadditive measures: analytical and algebraic methods. In: Reusch B (ed) Computational intelligence, theory and applications. Springer, Berlin, pp 29–40

    Chapter  Google Scholar 

  27. Maturo A, Squillante M, Ventre AGS (2010) Coherence for fuzzy measures and applications to decision making. In: Greco S et al. (eds) Preferences and decisions, STUDFUZZ 257 Springer, Heidelberg, pp 291–304

    Google Scholar 

  28. Maturo A, Squillante M, Ventre AGS (2010) Decision making. Fuzzy Meas Hyperstruct Adv Appl Stat Sci 2(2):233–253

    MATH  Google Scholar 

  29. Maturo A, Maturo F (2013) Research in social sciences: fuzzy regression and causal complexity. Springer, Heidelberg, pp 237–249

    Google Scholar 

  30. Maturo A, Maturo F (2014) Finite geometric spaces, steiner systems and cooperative games. Analele Universitatii “Ovidius” Constanta. Seria Matematica 22(1): 189–205

    Google Scholar 

  31. Maturo A, Maturo F (2017) Fuzzy events, fuzzy probability and applications in economic and social sciences. Springer International Publishing, Cham, pp 223–233

    Google Scholar 

  32. Maturo A, Sciarra E, Tofan I (2008) A formalization of some aspects of the social organization by means of the fuzzy set theory. Ratio Sociologica 1(2008):5–20

    Google Scholar 

  33. Maturo F (2016) Dealing with randomness and vagueness in business and management sciences: the fuzzy probabilistic approach as a tool for the study of statistical relationships between imprecise variables. Ratio Mathematica 30:45–58

    Google Scholar 

  34. Maturo F (2016) La regressione fuzzy. Fuzziness: Teorie e Applicazioni. Aracne Editrice, Roma, Italy, pp 99–110

    Google Scholar 

  35. Maturo F, Fortuna F (2016) Bell-shaped fuzzy numbers associated with the normal curve. Springer, Cham, pp 131–144

    MATH  Google Scholar 

  36. Maturo F, Hošková-Mayerová S (2017) Fuzzy regression models and alternative operations for economic and social sciences. Springer, Cham, pp 235–247

    Google Scholar 

  37. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York

    MATH  Google Scholar 

  38. Saaty TL (2008) Relative measurement and its generalization in decision making, why pairwise comparisons are central in mathematics for the measurement of intangible factors, the analytic hierarchy/network process. Rev R Acad Cien Serie A Mat 102(2):251–318

    Article  MathSciNet  MATH  Google Scholar 

  39. Shapley LS (1953) A value for n-person games. Ann Math Stud (Princeton Univ) 28: 307–317

    Google Scholar 

  40. Shapley LS (1962) Simple games. An outline of the theory. Behav Sci 7:59–66

    Google Scholar 

  41. Simon HA (1982) Models of bounded rationality, Mit Press, Cambridge (Mass.)

    Google Scholar 

  42. Sugeno M (1974) Theory of fuzzy integral and its applications, PhD Thesis, Tokyo

    Google Scholar 

  43. Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton

    MATH  Google Scholar 

  44. Weber S (1984) Decomposable measures and integrals for Archimedean t-conorms. J Math Anal Appl 101(1):114–138

    Article  MathSciNet  MATH  Google Scholar 

  45. Yager R (1986) A characterization of the extension principle. Fuzzy Sets Syst 18:205—217

    Google Scholar 

  46. Zadeh L (1975) The concept of a linguistic variable and its application to approximate reasoning. Inf Sci, Part I 8:199–249, Part 2: 301–357

    Google Scholar 

  47. Zadeh L (1975) The concept of a linguistic variable and its applications to approximate reasoning, Part III. Inf Sci 9:43–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Maturo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Maturo, A., Ventre, A.G.S. (2018). Fuzzy Numbers and Consensus. In: Collan, M., Kacprzyk, J. (eds) Soft Computing Applications for Group Decision-making and Consensus Modeling. Studies in Fuzziness and Soft Computing, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-319-60207-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60207-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60206-6

  • Online ISBN: 978-3-319-60207-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics