Abstract
A social network is an Internet-based collaboration platform that plays a vital role in information spread, opinion-forming, trend-setting, and keeps everyone connected. Moreover, the popularity of web and social networks has interesting applications including viral marketing, recommendation systems, poll analysis, etc. In these applications, user influence plays an important role. This chapter discusses how effectively social networks can be used for information propagation in the context of viral marketing. Picking the right group of users, hoping they will cause a chain effect of marketing, is the core of viral marketing applications. The strategy used to select the correct group of users is the influence maximization problem.
This chapter proposes one of the viable solutions to influence maximization. The focus is to find those users in the social networks who would adopt and propagate information, thus resulting in an effective marketing strategy. The three main components that would help in the effective spread of information in the social networks are: the network structure, the user’s influence on others, and the seeding algorithm. Amalgamation of these three aspects provides a holistic solution to influence maximization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrews, J.D., Beeson, S.: Birnbaum’s measure of component importance for noncoherent systems. IEEE Trans. Reliab. 52(2), 213–219 (2003)
Arenas, A., Duch, J., Fernandez, A., Gomez, S.: Size reduction of complex networks preserving modularity. CoRR (2007). abs/physics/0702015
Borgatti, S.P., Carley, K.M., Krackhardt, D.: On the robustness of centrality measures under conditions of imperfect data. Soc. Netw. 28(2), 124–136 (2006)
Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD, KDD ’09, pp. 199–208. ACM, New York, NY (2009). doi:10.1145/1557019.1557047
Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD, KDD ’10, pp. 1029–1038. ACM, New York, NY (2010) doi:10.1145/1835804.1835934
Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM ’10, pp. 88–97 (2010)
Chen, W., Lin, T., Tan, Z., Zhao, M., Zhou, X.: Robust influence maximization. CoRR (2016). abs/1601.06551. http://arxiv.org/abs/1601.06551
Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009). doi:10.1137/070710111. http://dx.doi.org/10.1137/070710111
Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD, KDD ’01, pp. 57–66. ACM, New York, NY (2001). doi:10.1145/502512.502525
Fang, X., Hu, P.J.H., Li, Z., Tsai, W.: Predicting adoption probabilities in social networks. Inf. Syst. Res. 24(1), 128–145 (2013)
Foti, N.J., Hughes, J.M., Rockmore, D.N.: Nonparametric sparsification of complex multiscale networks. PLoS One 6(2), 16431 (2011). doi:10.1371/journal.pone.0016431
Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)
Fung, W.S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general framework for graph sparsification. In: Fortnow, L., Vadhan, S.P. (eds.) STOC. pp. 71–80. ACM, New York, NY (2011)
Ganesan, K.: Case study on ripple effects of ice bucket challenge on social media channels (2016). http://www.digitalvidya.com/blog/
Gargano, L., Hell, P., Peters, J., Vaccaro, U.: Influence diffusion in social networks under time window constraints. In: Structural Information and Communication Complexity: 20th International Colloquium, SIROCCO 2013, Ischia, July 1–3, 2013. Revised Selected Papers
Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social networks. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, WSDM ’10, pp. 241–250. ACM, New York, NY (2010)
Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, WWW ’11, pp. 47–48. ACM, New York, NY (2011). doi:10.1145/1963192.1963217
He, X., Kempe, D.: Robust influence maximization. CoRR (2016). abs/1602.05240 http://arxiv.org/abs/1602.05240
Heidemann, J., Klier, M., Probst, F.: Identifying key users in online social networks: a pagerank based approach. In: Sabherwal, R., Sumner, M. (eds.) ICIS, p. 79. Association for Information Systems (2010)
Jiang, J., Wilson, C., Wang, X., Sha, W., Huang, P., Dai, Y., Zhao, B.Y.: Understanding latent interactions in online social networks. ACM Trans. Web 7(4), 18 (2013)
Johnson, T.: Mathematical modeling of diseases: susceptible-infected-recovered (sir) model (2009). http://op12no2.me/stuff/tjsir.pdf
Jung, K., Heo, W., Chen, W.: IRIE: a scalable influence maximization algorithm for independent cascade model and its extensions. CoRR (2011). abs/1111.4795
Kasthurirathna, D., Harre, M., Piraveenan, M.: Influence modelling using bounded rationality in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 33–40. ACM, New York, NY (2015)
Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD, KDD ’03, pp. 137–146. ACM, New York, NY (2003). doi:10.1145/956750.956769
Kempe, D., Kleinberg, J., Tardos, E.: Influential nodes in a diffusion model for social networks. In: Proceedings of the 32Nd International Conference on Automata, Languages and Programming, ICALP’05, pp. 1127–1138. Springer, Berlin, Heidelberg (2005)
Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. ii. The problem of endemicity. Proc. R. Soc. Lond. 138(834), (1932). doi:10.1098/rspa.1932.0171
Kimura, M., Saito, K., Motoda, H.: Efficient estimation of influence functions for sis model on social networks. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09, pp. 2046–2051. Morgan Kaufmann, San Francisco, CA (2009)
Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)
Kutzkov, K., Bifet, A., Bonchi, F., Gionis, A.: Strip: stream learning of influence probabilities. In: Proceedings of the 19th ACM SIGKDD, KDD ’13, pp. 275–283. ACM, New York, NY (2013)
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD, KDD ’07, pp. 420–429. ACM, New York, NY (2007)
Lisa, R.: Social influence. In: The Blackwell Encyclopedia of Sociology, pp. 4426–4429. Oxford Blackwell, Malden, MA (2008)
Liu, B., Cong, G., Xu, D., Zeng, Y.: Time constrained influence maximization in social networks. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), IEEE, pp. 439–448 (2012)
Mathioudakis, M., Bonchi, F., Castillo, C., Gionis, A., Ukkonen, A.: Sparsification of influence networks. In: Proceedings of the 17th ACM SIGKDD, KDD ’11, pp. 529–537. ACM, New York, NY (2011)
McCracken, G.: How ford got social marketing right (2010). https://hbr.org/2010/01/ford-recently-wrapped-the-firs/
Misiolek, E., Chen, D.Z.: Two flow network simplification algorithms. Inf. Process. Lett. 97(5), 197–202 (2006)
Mullaney, T.: Social media is reinventing how business is done (2012). http://www.usatoday.com/money/economy/story/2012-05-14/social-media-economy-companies/55029088/1/
Myerson, R.: Graphs and cooperation in games. In: Dutta, B., Jackson, M. (eds.) Networks and Groups, Studies in Economic Design, pp. 17–22. Springer, Berlin, Heidelberg (2003). doi:10.1007/978-3-540-24790-6_2
Nguyen, H., Zheng, R.: Influence spread in large-scale social networks–a belief propagation approach. In: Machine Learning and Knowledge Discovery in Databases, pp. 515–530. Springer, Berlin (2012)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Standford Infolab (1999)
Pham-Gia, T., Hung, T.: The mean and median absolute deviations. Math. Comput. Model. 34(7–8), 921–936 (2001)
Qin, Y., Ma, J., Gao, S.: Efficient influence maximization under TSCM: a suitable diffusion model in online social networks. Soft Comput. 1–12 (2016). doi:10.1007/s00500-016-2068-3
Quirin, A., Cordn, O., Santamara, J., Vargas-Quesada, B., Moya-Anegn, F.: A new variant of the pathfinder algorithm to generate large visual science maps in cubic time. Inf. Process. Manage. 44(4), 1611–1623 (2008)
1, 215–239 (2008) Robert, H.: Applicability of graph metrics when analyzing online social networks. Curr. Issues IT-Manage. 1, 215–239 (2008)
Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: Machine learning and knowledge discovery in databases, pp. 18–33. Springer, Berlin (2011)
Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. In: Lovrek, I., Howlett, R., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems. Lecture Notes in Computer Science, vol. 5179, pp. 67–75. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-85567-5_9
Saito, K., Kimura, M., Ohara, K., Motoda, H.: Efficient estimation of cumulative influence for multiple activation information diffusion model with continuous time delay. In: PRICAI 2010: Trends in Artificial Intelligence, Daegu, pp. 244–255 (2010)
Serrano, M.A., Bog, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. 106(16), 6483–6488 (2009)
Smith, C.: How many people use the top social media, apps & services (2014). Http://expandedramblings.com
Subbian, K., Aggarwal, C., Srivastava, J.: Mining influencers using information flows in social streams. ACM Trans. Knowl. Discov. Data 10(3), 26:1–26:28 (2016). doi:10.1145/2815625
Sumith, N., Annappa, B., Bhattacharya, S.: Social network pruning for building optimal social network: a user perspective. Knowl. Based Syst. 117, 101–110 (2017)
Teng, Y.W., Tai, C.H., Yu, P.S., Chen, M.S.: Modeling and utilizing dynamic influence strength for personalized promotion. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2015, pp. 57–64. ACM, New York, NY (2015)
Treagus, P.: The dark knight: a case study of viral marketing (2014). http://philtreagus.com/the-dark-knight-a-case-study-of-viral-marketing/
Wang, Z., Qian, Z., Lu, S.: A probability based algorithm for influence maximization in social networks. In: Proceedings of the 5th Asia-Pacific Symposium on Internetware, Internetware ’13, pp. 12:1–12:7. ACM, New York, NY (2013)
Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P., Zhao, B.Y.: User interactions in social networks and their implications. In: Proceedings of the 4th ACM European Conference on Computer systems, pp. 205–218. ACM, New York, NY (2009)
Xiang, R., Neville, J., Rogati, M.: Modeling relationship strength in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 981–990. ACM, New York, NY (2010)
Yang, J., Leskovec, J.: Modeling information diffusion in implicit networks. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 599–608. IEEE, New York, NY (2010)
Zhang, H., Mishra, S., Thai, M.T., Wu, J., Wang, Y.: Recent advances in information diffusion and influence maximization in complex social networks. Oppor. Mobile Soc. Netw. 37 (1.1) (2014)
Zhou, F., Malher, S., Toivonen, H.: Network simplification with minimal loss of connectivity. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 659–668 (2010). doi:10.1109/ICDM.2010.133
Zhou, F., Mahler, S., Toivonen, H.: Review of bisonet abstraction techniques. In: Bisociative Knowledge Discovery, pp. 166–178. Springer, Berlin (2012)
Zhou, F., Mahler, S., Toivonen, H.: Simplification of networks by edge pruning. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery. Lecture Notes in Computer Science, vol. 7250, pp. 179–198. Springer, Berlin (2012)
Zhuang, H., Sun, Y., Tang, J., Zhang, J., Sun, X.: Influence maximization in dynamic social networks. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1313–1318. IEEE, New York (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Sumith, N., Annappa, B., Bhattacharya, S. (2017). A Holistic Approach to Influence Maximization. In: Banati, H., Bhattacharyya, S., Mani, A., Köppen, M. (eds) Hybrid Intelligence for Social Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-65139-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-65139-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65138-5
Online ISBN: 978-3-319-65139-2
eBook Packages: Computer ScienceComputer Science (R0)