Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method

  • Chapter
  • First Online:
Geoinformatics and Atmospheric Science

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

Daily vertical coordinate time series of Global Navigation Satellite System (GNSS) stations usually contains tectonic and non-tectonic deformation signals, residual atmospheric delay signals, measurement noise, etc. In geophysical studies, it is very important to separate various geophysical signals from the GNSS time series to truthfully reflect the effect of mass loadings on crustal deformation. Based on the independence of mass loadings, we combine the Ensemble Empirical Mode Decomposition (EEMD) with the Phase Space Reconstruction-based Independent Component Analysis (PSR-ICA) method to analyze the vertical time series of GNSS reference stations. In the simulation experiment, the seasonal non-tectonic signal is simulated by the sum of the correction of atmospheric mass loading and soil moisture mass loading. The simulated seasonal non-tectonic signal can be separated into two independent signals using the PSR-ICA method, which strongly correlated with atmospheric mass loading and soil moisture mass loading, respectively. Likewise, in the analysis of the vertical time series of GNSS reference stations of Crustal Movement Observation Network of China (CMONOC), similar results have been obtained using the combined EEMD and PSR-ICA method. All these results indicate that the EEMD and PSR-ICA method can effectively separate the independent atmospheric and soil moisture mass loading signals and illustrate the significant cause of the seasonal variation of GNSS vertical time series in the mainland of China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amiri-Simkooei, A. R., Tiberius, C. C. J. M., and Teunissen, S. P. (2007). Assessment of noise in GPS coordinate time series: methodology and results. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7).

    Google Scholar 

  • Cardoso, J. (1998). Multidimensional independent component analysis. In Acoustics, Speech and Signal Processing. Proceedings of the 1998 IEEE International Conference, 4, 1941–1944.

    Google Scholar 

  • Dai, W., Huang, D., and Liu, B. (2014). A phase space reconstruction based single channel ICA algorithm and its application in dam deformation analysis. Survey Review, 47(345), 387–396.

    Google Scholar 

  • Dong, D., Fang, P., Bock, Y., Cheng, M. K., and Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS‐derived site position time series. Journal of Geophysical Research: Solid Earth (1978–2012), 107(B4), ETG-9.

    Google Scholar 

  • Dragert, H., Wang, K., and James, T. S. (2001). A silent slip event on the deeper Cascadia subduction interface. Science, 292(5521), 1525–1528.

    Google Scholar 

  • Fraser, A. M., and Swinney, H. L. (1986). Independent coordinates for strange attractors from mutual information. Physical review A, 33(2), 1134.

    Google Scholar 

  • Grech, D., and Mazur, Z. (2013). On the scaling ranges of detrended fluctuation analysis for long-term memory correlated short series of data. Physica A: Statistical Mechanics and its Applications, 392(10), 2384–2397.

    Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H. et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 454, 1971, 903–995).

    Google Scholar 

  • Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural networks, 13(4), 411–430.

    Google Scholar 

  • Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. Neural Networks, IEEE Transactions on, 10(3), 626–634.

    Google Scholar 

  • Jiang, Z., Wang, M., Wang, Y., Wu, Y., Che, S. et al. (2014). GPS constrained coseismic source and slip distribution of the 2013 mw6.6 Lushan, China, earthquake and its tectonic implications. Geophysical Research Letters, 41(2), 407–413.

    Google Scholar 

  • Kennel, M. B., Brown, R., and Abarbanel, H. D. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6), 3403.

    Google Scholar 

  • Li Z, Jiang. W. P., Liu H. F., and Qu X.C. (2012). Noise model establishment and analysis of IGS reference station coordinate time series inside China. Acta Geodaetica et Cartographica Sinica, 41(4), 496G503.

    Google Scholar 

  • Mao, A., Harrison, C. G., and Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research: Solid Earth (1978–2012), 104(B2), 2797–2816.

    Google Scholar 

  • Montillet, J. P., Tregoning, P., McClusky, S., and Yu, K. (2013). Extracting white noise statistics in GPS coordinate time series. IEEE Geoscience and Remote Sensing Letters, 10(3), 563–567.

    Google Scholar 

  • Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. Thesis, University of California, San Diego.

    Google Scholar 

  • Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S. (1980). Geometry from a time series. Physical Review Letters, 45(9), 712.

    Google Scholar 

  • Qin, Z., Zou, X., and Weng, F. (2012). Comparison between linear and nonlinear trends in NOAA-15 AMSU-A brightness temperatures during 1998–2010. Climate Dynamics, 39(7–8), 1763–1779.

    Google Scholar 

  • Rodriguez, E., Echeverria, J. C., and Alvarez-Ramirez, J. (2009). 1/fαfractal noise generation from Grünwald-Letnikov formula. Chaos, Solitons & Fractals, 39(2), 882–888.

    Google Scholar 

  • Schroeder, M., Wiesenfeld, K. (1991). Fractals, chaos, power laws: minutes from an infinite paradise. Physics Today, 44(11), 91-91.

    Google Scholar 

  • Takens, F. (1981). Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Warwick1980. Springer, Berlin, Heidelberg, 366–381.

    Google Scholar 

  • Tiampo, K. F., Rundle, J. B., Klein, W., Ben-Zion, Y., and McGinnis, S. (2004). Using eigenpattern analysis to constrain seasonal signals in Southern California. Pure and Applied Geophysics, 161(9–10), 1991–2003.

    Google Scholar 

  • Vandam, T. M., Blewitt, G., and Heflin, M. B. (1994). Atmospheric pressure loading effects on Global Positioning System coordinate determinations.Journal of Geophysical Research: Solid Earth (1978–2012), 99(B12), 23939–23950.

    Google Scholar 

  • Wang, M., Shen, Z. K., and Dong, D. N. (2005). Effects of non-tectonic crustal deformation on continuous GPS position time series and correction to them. Diqiu Wuli Xuebao(Chinese Journal of Geophysics), 48(5), 1045–1052.

    Google Scholar 

  • Williams, S. D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., et al. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth (1978–2012), 109(B3).

    Google Scholar 

  • Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(01), 1–41.

    Google Scholar 

  • Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S. et al. (1997). Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research: Solid Earth (1978–2012), 102(B8), 18035–18055.

    Google Scholar 

Download references

Acknowledgments

We thank the Jet Propulsion Laboratory for providing the QOCA software, and Crustal Movement Observation Network of China for providing the GNSS time series. This work was supported by the State Key Development Program of Basic Research of China (Grant No. 2013CB733303) and the National Natural Science Foundation of China (Grant No. 41074004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujiao Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Peng, W., Dai, W., Santerre, R., Cai, C., Kuang, C. (2018). GNSS Vertical Coordinate Time Series Analysis Using Single-Channel Independent Component Analysis Method. In: Niedzielski, T., Migała, K. (eds) Geoinformatics and Atmospheric Science. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-66092-9_14

Download citation

Publish with us

Policies and ethics