Abstract
In this chapter we describe Deep Neural Networks (DNN), their history, and some related work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cao, Y., Chen, Y., Khosla, D.: Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput. Vis. (2014)
Cios, K.J., Shin, I.: Image recognition neural network: IRNN. Neurocomputing 7(2), 159–185 (1995)
Fukushima, K.: Neocognitron: a self organizing neural network model for a mechanism for pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)
Hebb DO. 1949. The Organization of Behavior. Wiley
Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 177, 500–544 (1952)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)
Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14, 1569–1572 (2003)
Izhikevich, E.M.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)
Kandel E.R., et al.: Principles of Neural Science, 5th edn. McGraw-Hill (2013)
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)
Konorski J.: Conditioned Reflexes and Neuron Organization. Cambridge University Press, Cambridge (267 pp.); Reprinted with a supplementary chapter in 1968 by Hafner Publ. Co., New York (1948)
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: NIPS’ 2012 (2012)
Lim, H.K., Keniston, L.P., Cios, K.J.: Modeling of multisensory convergence with a network of spiking neurons: a reverse engineering approach. IEEE Trans. Biomed. Eng. 58(7), 1940–1949 (2011)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of IEEE, vol. 86, no. 11, pp. 2278–2324 (1998)
LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256. IEEE (2010)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
MacGregor, R.J.: Neural and Brain Modeling. Academic Press (1987)
Minsky, M., Papert, S.: An Introduction to Computational Geometry. MIT Press (1969)
Nguyen, A., Yosinski, J., Clune, J.: Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images (2014). arXiv:1412.1897v2 [cs.CV] 18 Dec 2014
Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)
Rosenblatt, F.: The Perceptron—a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory (1957)
Sala, D.M., Cios, K.J.: Solving graph algorithms with networks of spiking neurons. IEEE Trans. Neural Netw. 10(4), 953–957 (1999)
Shin, J.H., Smith, D., Swiercz, W., Staley, K., Rickard, T., Montero, J., Kurgan, L., Cios, K.J.: Recognition of partially occluded and rotated images with a network of spiking neurons. IEEE Trans. Neural Netw. 21(11), 1697–1708 (2010)
Song, S., Miller, K.D., Abbot, L.F.: Competitive Hebbian learning through spike timing-dependent synaptic plasticity. Nat. Neurosci. 3(9) (2000)
Strack, B., Jacobs, K., Cios, K.J.: Biological restraint on the Izhikevich neuron model essential for seizure modeling. In: Proceedings of 6th International IEEE EMBS Conference on Neural Engineering, San Diego, 6–8 Nov, pp. 395–398 (2013)
Strack, B., Jacobs, K., Cios, K.J.: Simulating vertical and horizontal inhibition with short term dynamics in a multi-column multi-layer model of Neocortex. Int. J. Neural Syst. 24(5), 1440002 [19 pp.] (2014)
Swiercz, W., Cios, K.J., Staley, K., et al.: New synaptic plasticity rule for networks of spiking neurons. IEEE Trans. Neural Netw. 17(1), 94–105 (2006)
Szeged, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, D., Fergus, R.: Intriguing properties of neural networks. In: International Conference on Learning Representations (2014)
Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University (1974)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Cios, K.J. (2018). Deep Neural Networks—A Brief History. In: Gawęda, A., Kacprzyk, J., Rutkowski, L., Yen, G. (eds) Advances in Data Analysis with Computational Intelligence Methods. Studies in Computational Intelligence, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-67946-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-67946-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67945-7
Online ISBN: 978-3-319-67946-4
eBook Packages: EngineeringEngineering (R0)