Abstract
This chapter discusses issues in the practical integration approaches for intelligent rule-based systems. In it selected issues that need to be addressed for performing integration of rule based systems are identified and discussed. These include high level modeling techniques for rule bases, integration architectures for rule-based systems, and rule interoperability challenges. In the chapter a short review of different rule types and languages used to express them is given. Moreover, important issues regarding construction of complex rule bases are introduced. Furthermore, the execution issues of rule bases are considered, with the emphasis on addressing the structure identified during modeling. Finally, main approaches to integration and interoperability of rule-based systems are given.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
References
Andert, E.P.: Integrated knowledge-based system design and validation for solving problems in uncertain environments. Int. J. Man-Mach. Stud. 36(2), 357–373 (1992). http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=144453
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press (2003)
Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture (SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press (2006)
Boehm, B.W.: Verifying and validating software requirements and design specifications. IEEE Softw. 1(1), 75–88 (1984)
Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of web rules. In: M. Dean, J. Hall, A. Rotolo, S. Tabet (eds.) Semantic Web Rules—International Symposium, RuleML 2010, Washington, DC, USA, 21–23 Oct 2010. Proceedings. Lecture Notes in Computer Science, vol. 6403, pp. 162–178. Springer (2010). doi:10.1007/978-3-642-16289-3
Boley, H., Tabet, S., Wagner, G.: Design rationale for RuleML: a markup language for semantic web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proceedings of SWWS’01, The First Semantic Web Working Symposium, Stanford University, California, USA, 30 July–1 Aug 2001, pp. 381–401 (2001). http://www.semanticweb.org/SWWS/program/full/paper20.pdf
Brachman, R., Levesque, H.: Knowledge Representation and Reasoning, 1st edn. Morgan Kaufmann (2004)
Browne, P.: JBoss Drools Business Rules. Packt Publishing (2009)
Burbeck, S.: Applications programming in Smalltalk-80(TM): How to use Model-View-Controller (MVC). Department of Computer Science, University of Illinois, Urbana-Champaign, Technical report (1992)
Charles, E., Dubois, O.: Melodia: logical methods for checking knowledge bases. In: Ayel, M., Laurent, J.P. (eds.) Validation, Verification and Test of Knowledge-Based Systems, pp. 95–105. Wiley, New York (1991). http://portal.acm.org/citation.cfm?id=130251.130258
Chorowski, J., Zurada, J.M.: Extracting rules from neural networks as decision diagrams. IEEE Trans. Neural Netw. 22(12), 2435–2446 (2011). doi:10.1109/TNN.2011.2106163
Community, J.: Drools verifier. http://community.jboss.org/wiki/DroolsVerifier (2009)
Connolly, T., Begg, C., Strechan, A.: Database Systems, A Practical Approach to Design, Implementation, and Management, 2nd edn. Addison-Wesley (1999)
Culbert, S.: Expert system verifications and validation. In: Proceedings of First AAAI Workshop on V,V & Testing, Aug 1988
De Raedt, L., Sablon, G., Bruynooghe, M.: Using interactive concept-learning for knowledge base validation and verification. In: Ayel, M., Laurent, J. (eds.) Validation, Verification and Testing of Knowledge Based Systems, pp. 177–190. Wiley (1991)
Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for rule-based data understanding. In: Proceedings of the IEEE, pp. 771–805 (2004)
Flach, P.: Machine Learning: The Art and Science of Algorithms That Make Sense of Data. Cambridge University Press, New York (2012)
Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match problem. Artif. Intell. 19(1), 17–37 (1982)
Friedman-Hill, E.: Jess in Action, Rule Based Systems in Java. Manning (2003)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, 1st edn. Addison-Wesley Pub Co. (1995)
Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format Version 3.0 Reference Manual (1992)
Giarratano, J., Riley, G.: Expert Systems. Principles and Programming, 4th edn. Thomson Course Technology, Boston, MA, United States (2005). ISBN 0-534-38447-1
Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson (2005)
Giurca, A., Gašević, D., Taveter, K. (eds.): Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches. Information Science Reference, Hershey, New York (2009)
Graham, I.: Business Rules Management and Service Oriented Architecture. Wiley (2006)
von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules Approach. Wiley (2001)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publisher (2000)
Hanson, E.N., Hasan, M.S.: Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing. Technical Report 93-036, CIS Department University of Florida (1993)
van Harmelen, F., Lifschitz, V., Porter, B. (eds.): Handbook of Knowledge Representation. Elsevier Science (2007)
Hayes-Roth, B.: A blackboard architecture for control. Artif. Intell. 26(3), 251–321 (1985)
Herre, H., Jaspars, J.O.M., Wagner, G.: Partial logics with two kinds of negation as a foundation for knowledge-based reasoning. Centrum voor Wiskunde en Informatica (CWI) 158, 35 (1995)
Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison-Wesley (1999). ISBN 0-201-87686-8
Kacprzyk, J., Pedrycz, W. (eds.): Springer Handbook of Computational Intelligence. Springer (2015). doi:10.1007/978-3-662-43505-2
Kifer, M.: Rule interchange format: the framework. In: Calvanese, D., Lausen, G. (eds.) Web Reasoning and Rule Systems, Second International Conference, RR 2008, Karlsruhe, Germany, 31 Oct–1 Nov 2008. Proceedings. Lecture Notes in Computer Science, vol. 5341, pp. 1–11. Springer (2008). doi:10.1007/978-3-540-88737-9_1
Kifer, M., Boley, H.: RIF overview. W3C working draft, W3C. http://www.w3.org/TR/rif-overview (2009)
Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. J. ACM 42(4), 741–843 (1995). doi:10.1145/210332.210335
Klösgen, W., Żytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)
Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx BPMN editor. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing: 11th International Conference, ICAISC 2012: Zakopane, Poland, 29 Apr–3 May 2012. Lecture Notes in Artificial Intelligence, vol. 7268, pp. 573–581. Springer (2012). http://www.springerlink.com/content/u654r0m56882np77/
Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)
Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Berlin, Heidelberg (2006)
Ligęza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gašević, D., Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches, pp. 273–301. IGI Global, Hershey, New York (2009)
Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture, 1st edn. Addison-Wesley Professional (2002)
Meseguer, P.: Incremental verification of rule-based expert systems. In: Proceedings of the 10th European conference on Artificial intelligence, ECAI ’92, pp. 840–844. Wiley, New York, NY, USA (1992). http://portal.acm.org/citation.cfm?id=145448.147581
Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. OMG (2003)
Miranker, D.P.: TREAT: A Better Match Algorithm for AI Production Systems; Long Version. Technical Report 87-58, University of Texas (1987)
Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 305–312. Springer, Berlin, Heidelberg (2011)
Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: HalVA—rule analysis framework for XTT2 rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 337–344. Springer, Berlin, Heidelberg (2011). http://www.springerlink.com/content/c276374nh9682jm6/
Nalepa, G.J.: Architecture of the HeaRT hybrid rule engine. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing: 10th International Conference, ICAISC 2010: Zakopane, Poland, 13–17 June 2010, Pt. II. Lecture Notes in Artificial Intelligence, vol. 6114, pp. 598–605. Springer (2010)
Nalepa, G.J.: Loki—semantic wiki with logical knowledge representation. In: Nguyen, N.T. (ed.) Transactions on Computational Collective Intelligence III. Lecture Notes in Computer Science, vol. 6560, pp. 96–114. Springer (2011). http://www.springerlink.com/content/y91w134g03344376/
Nalepa, G.J.: Semantic Knowledge Engineering. A Rule-Based Approach. Wydawnictwa AGH, Kraków (2011)
Nalepa, G.J., Kluza, K.: UML representation for rule-based application models with XTT2-based business rules. Int. J. Softw. Eng. Knowl. Eng. (IJSEKE) 22(4), 485–524 (2012). doi:10.1142/S021819401250012X, http://www.worldscientific.com
Nalepa, G.J., Ligęza, A.: Conceptual modelling and automated implementation of rule-based systems. In: Software Engineering: Evolution and Emerging Technologies. Frontiers in Artificial Intelligence and Applications, vol. 130, pp. 330–340. IOS Press, Amsterdam (2005)
Nalepa, G.J., Ligęza, A.: HeKatE methodology, hybrid engineering of intelligent systems. Int. J. Appl. Math. Comput. Sci. 20(1), 35–53 (2010)
Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2 method. Int. J. Artif. Intell. Tools 20(6), 1107–1125 (2011)
Nazareth, D.L.: Issues in the verification of knowledge in rule-based systems. Int. J. Man-Mach. Stud. 30(3), 255–271 (1989). http://www.reviews.com/reviewer/quickreview/frameset_toplevel.cfm?bib_id=69244
Nguyen, M.N., Zurada, J.M., Rajapakse, J.C.: Toward better understanding of protein secondary structure: Extracting prediction rules. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(3), 858–864 (2011). doi:10.1109/TCBB.2010.16
Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Checking an expert systems knowledge base for consistency and completeness. In: IJCAI, pp. 375–378 (1985). http://dli.iiit.ac.in/ijcai/IJCAI-85-VOL1/PDF/070.pdf
OMG: Production Rule Representation (OMG PRR) version 1.0 specification. Technical Report formal/2009-12-01, Object Management Group (2009). http://www.omg.org/spec/PRR/1.0
OMG: Business Process Model and Notation (BPMN): Version 2.0 specification. Technical Report formal/2011-01-03, Object Management Group (2011)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht/Boston/London (1991)
Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int. J. Man-Mach. Stud. 38(4), 661–688 (1993). http://users.cs.cf.ac.uk/A.D.Preece/publications/download/ijhcs1993.pdf
Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int. J. Man-Mach. Stud. 38, 161–181 (1993)
Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-based systems. Knowl. Eng. Rev. 7(02), 115–141 (1992). doi:10.1017/S026988890000624X
Riley, G.: CLIPS—A Tool for Building Expert Systems. http://clipsrules.sourceforge.net (2008)
Rousset, M.C.: On the consistency of knowledge bases: the COVADIS system. In: ECAI, pp. 79–84 (1988)
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Inf. Sci. 266, 1–15 (2014). doi:10.1016/j.ins.2013.12.060
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the Gaussian approximation. IEEE Trans. Knowl. Data Eng. 26(1), 108–119 (2014). doi:10.1109/TKDE.2013.34
Salatino, M.: jBPM Developer Guide. Packt Publishing Ltd (2009)
Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). doi:10.1109/TNN.2002.1000125
Sommerville, I.: Software Engineering, 7th edn. International Computer Science. Pearson Education Limited (2004)
Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-based systems. IEEE Trans. Knowl. Data Eng. 11, 202–212 (1999). doi:10.1109/69.755629
Vanthienen, J., Dries, E., Keppens, J.: Clustering knowledge in tabular knowledge bases. In: ICTAI, pp. 88–95 (1996)
Vermesan, A.I., Coenen, F. (eds.): Validation and Verification of Knowledge Based Systems. Theory, Tools and Practice. Kluwer Academic Publisher, Boston (1999)
Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML—towards a general web rule language framework. In: Web Intelligence, pp. 628–631. IEEE Computer Society (2004). doi:10.1109/WI.2004.134, http://doi.ieeecomputersociety.org
Wagner, G., Damásio, C.V., Antoniou, G.: Towards a general web rule language. Int. J. Web Eng. Technol. 2(2/3), 181–206 (2005). doi:10.1504/IJWET.2005.008483
Zacharias, V.: Development and verification of rule based systems—a survey of developers. In: Proceedings of the International Symposium on Rule Representation, Interchange and Reasoning on the Web, RuleML ’08, pp. 6–16. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-88808-6_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Nalepa, G.J. (2018). Techniques for Construction and Integration of Rule Bases. In: Gawęda, A., Kacprzyk, J., Rutkowski, L., Yen, G. (eds) Advances in Data Analysis with Computational Intelligence Methods. Studies in Computational Intelligence, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-67946-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-67946-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67945-7
Online ISBN: 978-3-319-67946-4
eBook Packages: EngineeringEngineering (R0)