Abstract
A bilevel texture model is proposed, based on a local transform of a Gaussian random field. The core of this method relies on the optimal transport of a continuous Gaussian distribution towards the discrete exemplar patch distribution. The synthesis then simply consists in a fast post-processing of a Gaussian texture sample, boiling down to an improved nearest-neighbor patch matching, while offering theoretical guarantees on statistical compliancy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)
Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proceedings of the ICCV 1999, p. 1033 (1999)
Efros, A., Freeman, W.: Image quilting for texture synthesis and transfer. In: ACM TOG, pp. 341–346, August 2001
Galerne, B., Gousseau, Y., Morel, J.M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)
Galerne, B., Leclaire, A.: Texture inpainting using efficient Gaussian conditional simulation. SIIMS 10(3), 1446–1474 (2017)
Galerne, B., Leclaire, A., Moisan, L.: A texton for fast and flexible Gaussian texture synthesis. In: Proceedings of the EUSIPCO, pp. 1686–1690 (2014)
Galerne, B., Leclaire, A., Moisan, L.: Texton noise. Comput. Graph. Forum (2017). doi:10.1111/cgf.13073
Genevay, A., Cuturi, M., Peyré, G., Bach, F.: Stochastic optimization for large-scale optimal transport. In: Proceedings of the NIPS, pp. 3432–3440 (2016)
Gutierrez, J., Rabin, J., Galerne, B., Hurtut, T.: Optimal patch assignment for statistically constrained texture synthesis. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 172–183. Springer, Cham (2017). doi:10.1007/978-3-319-58771-4_14
Kitagawa, J., Mérigot, Q., Thibert, B.: A Newton algorithm for semi-discrete optimal transport. J. Eur. Math Soc. (2017)
Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. ACM TOG 24(3), 795–802 (2005)
Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM TOG 22(3), 277–286 (2003)
Lefebvre, S., Hoppe, H.: Parallel controllable texture synthesis. ACM TOG 24(3), 777–786 (2005)
Levina, E., Bickel, P.: Texture synthesis and nonparametric resampling of random fields. Ann. Stat. 34(4), 1751–1773 (2006)
Lévy, B.: A numerical algorithm for L2 semi-discrete optimal transport in 3D. ESAIM: M2AN 49(6), 1693–1715 (2015)
Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM TOG 20(3), 127–150 (2001)
Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30(5), 1583–1592 (2011)
Moulines, E., Bach, F.: Non-asymptotic analysis of stochastic approximation algorithms for machine learning. In: Proceedings of the NIPS, pp. 451–459 (2011)
Raad, L., Desolneux, A., Morel, J.: A conditional multiscale locally Gaussian texture synthesis algorithm. J. Math. Imaging Vis. 56(2), 260–279 (2016)
Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24785-9_37
Tartavel, G., Peyré, G., Gousseau, Y.: Wasserstein loss for image synthesis and restoration. SIAM J. Imaging Sci. 9(4), 1726–1755 (2016)
Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)
Wei, L.Y., Lefebvre, S., Kwatra, V., Turk, G.: State of the art in example-based texture synthesis. In: Eurographics, State of the Art Reports, pp. 93–117 (2009)
Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the SIGGRAPH 2000, pp. 479–488 (2000)
Xia, G., Ferradans, S., Peyré, G., Aujol, J.: Synthesizing and mixing stationary gaussian texture models. SIAM J. Imaging Sci. 7(1), 476–508 (2014)
Acknowledgments
This work has been partially funded by Project Texto (Projet Jeunes Chercheurs du GdR Isis).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Galerne, B., Leclaire, A., Rabin, J. (2017). Semi-discrete Optimal Transport in Patch Space for Enriching Gaussian Textures. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science(), vol 10589. Springer, Cham. https://doi.org/10.1007/978-3-319-68445-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-68445-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68444-4
Online ISBN: 978-3-319-68445-1
eBook Packages: Computer ScienceComputer Science (R0)