Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Wearable Units

  • Chapter
  • First Online:
Seamless Healthcare Monitoring

Abstract

Wearable inertial sensors have been extensively developed in recent years. Inertial sensors, including accelerometers, gyroscopic sensors, and magnetic sensors, can be embedded in parts of the body, such as the trunk, legs, arms, etc., to monitor motion-related human activities. Inertial sensors are the subject of research as well as of clinical trials. Because sensors must have sufficient accuracy and validity, evaluation of sensor signals is of interest. In this chapter, we examine the technical principles of several types of inertial sensors and provide an assessment of these sensors for patient rehabilitation in clinical practice and sport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dong, P., Li, X., Yang, H., Bao, H., Zhou, W., Li, S., & Feng, S. (2008). High-performance monolithic triaxial piezoresisitive shock accelerometers. Sensors and Actuators A: Physical, 141(2), 339–346.

    Article  Google Scholar 

  2. Zou, Q., Tan, W., Kim, E. S., & Loeb, G. E. (2008). Single- and triaxial piezoelectric-bimorph accelerometers. Journal of Microelectromechnical Systems, 17(1), 45–57.

    Article  Google Scholar 

  3. Vu, H., Palacios, A., In, V., Longhini, P., & Nelf, J. D. (2011). A drive-free vibratory gyroscope. Chaos, 21, 013103.

    Article  MATH  Google Scholar 

  4. Sassen, S., Voss, R., Schalk, J., Stenzei, E., Gleissner, T., Gruenberger, R., Neubauer, F., Ficker, W., Kupke, W., Bauer, K., & Rose, M. (2000). Tuning for silicon angular rate sensor with enhanced performance for automotive applications. Sensors and Actuators A: Physical, 83(1–3), 80–84.

    Article  Google Scholar 

  5. Lowe, S. A., & ÓLaighin, G. (2014). Monitoring human health behaviour in one’s living environment: A technological review. Medical Engineering & Physics, 36(2), 147–168.

    Article  Google Scholar 

  6. Tsai, N.-C., & Sue, C.-Y. (2008). Fabrication and analysis of a micro-machined tri-axis gyroscope. Journal of Micromechanics and Microengineering, 18(11), 115014.

    Article  Google Scholar 

  7. Dunzhu Xia, D., Yu, C., & Kong, L. (2014). The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1), 1394–1473. https://doi.org/10.3390/s140101394.

    Article  Google Scholar 

  8. Giansanti, D., Macellari, V., Maccioni, G., & Cappozzo, A. (2003). Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Transactions on Biomedical Engineering, 50(4), 476–483.

    Article  Google Scholar 

  9. Roetenberg, D., Luinge, H. J., Baten, C. T. M., & Veltink, P. H. (2005). Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 395–405.

    Article  Google Scholar 

  10. Roetenberg, D., Slycke, P. J., & Vetink, P. H. (2007). Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Transactions on Biomedical Engineering, 54(5), 883–890.

    Article  Google Scholar 

  11. Lenz, J., & Edelstein, A. S. (2006). Magnetic sensors and their applications. IEEE Sensors Journal, 6, 631–649.

    Article  Google Scholar 

  12. Boona, S. R., Myers, R. C., & Heremans, J. P. (2014). Spin caloritronics. Energy and Environmental Science, 7, 885–910.

    Article  Google Scholar 

  13. Randjelovic, Z. B., Kayal, M., Popovic, R., & Blanchard, H. (2002). Highly sensitive Hall magnetic sensor microsystem in CMOS technology. IEEE Journal Solid-State Circuits, 37, 151–159.

    Article  Google Scholar 

  14. Tumanski, S. (2007). Induction coil sensors – A review. Measurements Science and Technology, 18, R31–R46.

    Article  Google Scholar 

  15. Mohri, K. (1994). Application of amorphous magnetic wires to computer peripherals. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 185(1–2), 141–145.

    Article  Google Scholar 

  16. Mohri, K., Panina, L. V., Uchiyama, T., Bushida, K., & Noda, M. (1995). Sensitive and quick response micro magnetic sensor utilizing magneto-impedance in Co-rich amorphous wires. IEEE Transactions on Magnetics, 31(2), 1266–1275.

    Article  Google Scholar 

  17. Kanno, J. T., Mohri, K., Yagi, T., Uchiyama, T., & Shen, L. P. (1997). Amorphous wire MI micro sensor using CMOS IC multivibrator. IEEE Transactions on Magnetics, 33(5), 3353–3360.

    Article  Google Scholar 

  18. Uchiyama, T., Nakayama, S., Mohri, K., & Bushida, K. (2009). Biomagnetic field detection using very high sensitivity magnetoimpedance sensors for medical applications. Physica Status Solidi A: Applications and Materials Science, 206, 639–643.

    Article  Google Scholar 

  19. Kádár, Z., Bossche, A., Sarro, P. M., & Mollinger, J. R. (1998). Magnetic-field measurements using an integrated resonant magnetic-field sensor. Sensors and Actuators A, 70, 225–232.

    Article  Google Scholar 

  20. Guangtao, D., Xiangdong, C., Qibin, L., Hui, L., & Huihuil, G. (2010). MEMS magnetic field sensor based on silicon bridge structure. Journal of Semiconductors, 31(10), 104011.

    Article  Google Scholar 

  21. Herrera-May, A. L., Aguilera-Cortés, L. A., García-Ramírez, P. J., & Manjarrez, E. (2009). Resonant magnetic field sensors based On MEMS technology. Sensors, 9(10), 7785–7813. https://doi.org/10.3390/s91007785.

    Article  Google Scholar 

  22. Dennis, J. O., Ahmad, F., Khir, M. H. B. M., & Hamid, N. H. B. (2015). Optical characterization of Lorentz force based CMOS-MEMS magnetic field sensor. Sensors, 15, 18256–18269. https://doi.org/10.3390/s150818256.

    Article  Google Scholar 

  23. Herrera-May, A. L., Soler-Balcazar, J. C., Vázquez-Leal, H., Martínez-Castillo, J., Vigueras-Zuñiga, M. O., & Aguilera-Cortés, L. A. (2016). Recent advances of MEMS resonators for Lorentz force based magnetic field sensors: Design, applications and challenges. Sensors, 16(9), 1359. https://doi.org/10.3390/s16091359.

    Article  Google Scholar 

  24. Bortz, J. E. (1971). A new mathematical formulation for strapdowm inertial navigation. IEEE Transactions on Aerospace and Electronic Systems, 7, 61–66.

    Article  Google Scholar 

  25. Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical analysis systems. Journal of Biomechanics, 35(4), 537–542.

    Article  Google Scholar 

  26. Williamson, R., & Andrews, B. J. (2001). Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Medical and Biological Engineering and Computing, 39, 1–9.

    Article  Google Scholar 

  27. Zhu, R., & Zhou, Z. (2004). A real-time articulated human motion tracking using tri-axial internal/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engeering, 12(2), 295–302.

    Article  MathSciNet  Google Scholar 

  28. Sabatini, A. M. (2006). Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering, 53, 1346–1356.

    Article  Google Scholar 

  29. Cooper, G., Sheret, I., McMillian, L., Siliverdis, K., Sha, N., Hodgins, D., Kenney, L., & Howard, D. (2009). Inertial sensor-based knee flexion/extension angle estimation. Journal of Biomechanics, 42(16), 2678–2685.

    Article  Google Scholar 

  30. Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., & Yoshinari, S. (2009). Gait posture estimation using wearable acceleration and gyro sensors. Journal of Biomechanics, 42, 2486–2494.

    Article  Google Scholar 

  31. Zhang, Z., Huang, Z., & Wu, J. (2010). Ambulatory hip angle estimation using Gaussian particle filter. Journal of Signal Processing Systems, 58, 341–357.

    Article  Google Scholar 

  32. Togawa, T., Tamura, T, & Ake Oberg, P. (2011). Biomedical sensors and instruments (2nd ed., pp. 221–224). New York: CRC Press .

    Google Scholar 

  33. Spolek, G. A., & Lippert, F. G. (1976). An instrument shoe – A portable force measurement device. Journal of Biomechanics, 9, 779–783.

    Article  Google Scholar 

  34. Miyazaki, S., & Iwakua, H. (1978). Foot-force measurement device for clinical assessment of pathological gait. Medical & Biological Engineering & Computing, 16, 429–436.

    Article  Google Scholar 

  35. Miyazaki, S., & Ishida, A. (1984). Capacitive transducer for continuous measurement of vertical foot force. Medical & Biological Engineering & Computing, 22, 309–316.

    Article  Google Scholar 

  36. Tekscan Co. https://www.tekscan.com/. Accessed 30 June 2017.

  37. Catalfamo, P., Moser, D., Ghoussayni, S., & Ewins, D. (2008). Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait & Posture, 28, 420–426.

    Article  Google Scholar 

  38. Nicolopoulos, C. S., Anderson, E. G., Solomonidis, S. E., & Giannoudis, P. V. (2000). Evaluation of the gait analysis FSCAN pressure systems: Clinical too or toy? The Foot, 10(3), 124–130.

    Google Scholar 

  39. Liedtke, C., Fokkenrood, S. A., Menger, J. T., van der Kooij, H., & Veltink, P. H. (2007). Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture, 26(1), 39–47.

    Article  Google Scholar 

  40. Healy, A., Burgess-Walker, P., Naemi, R., & Chockalingam, N. (2012). Repeatability of WalkinSense® in shoe pressure measurement system: A preliminary study. The Foot, 22, 35–39.

    Article  Google Scholar 

  41. Morris S. J. (2004, June). A shoe-integrated sensor system for wireless gait analysis and real-time therapeutic feedback. PhD thesis, MIT Mechanical Engineering Department.

    Google Scholar 

  42. Bamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413–423.

    Article  Google Scholar 

  43. Harada, T., Sakata, A., Mori, T., & Sato, T. (2000). Sensor pillow system: Monitoring respiration and body movement in sleep. IEEE International Conference on Intelligent Robots and Systems, 1, 351–356.

    Google Scholar 

  44. Harada, T., Sato, T., & Mori, T. (2002). Estimation of bed ridden human’s gross and slight movement based on pressure sensors distribution bed. Proceedings of IEEE international conference on Robotics and Automation, ICRA ’02, 3795–3800.

    Google Scholar 

  45. Chen, Y., & Chen, W. (2011). Long-term tracking of a patient’s health condition based on pulse rate dynamics during sleep. Annals of Biomedical Engineering, 39(12), 2922–2934.

    Article  Google Scholar 

  46. Lokavee, S., Puntheeranurak, T., & Kerdcharoen, T. (2012). Sensor pillow and bed sheet system: Unconstrained monitoring of respiration rate and posture movements during sleep. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, 1564–1568.

    Google Scholar 

  47. Kortelainen, J. M., van Gils, M., & Pärkkä, J. (2012). Multichannel bed pressure sensor for sleep monitoring. Computing in Cardiology, 39, 313–316.

    Google Scholar 

  48. Huang, Y., Xu, J., Yu, B., & Shull, P. B. (2016). Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait & Posture, 48, 36–41.

    Article  Google Scholar 

  49. Fokkema, T., Kooiman, T. J. M., Krijnen, W. P., van der Shans, C. P., & de Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine and Science in Sports and Exercise, 49(4), 793–800.

    Article  Google Scholar 

  50. Wen, D., Zhang, X., Liu, X., & Lei, J. (2017). Evaluating the consistency of current mainstream wearable devices in health monitoring: A comparison under free-living conditions. Eysenbach G, ed. Journal of Medical Internet Research, 19(3), e68. https://doi.org/10.2196/jmir.687.

    Article  Google Scholar 

  51. Atallah, L., Lo, B., Ali, R., & Yang, G.-Z. (2009). Real-time activity classification using ambient and wearable sensors. IEEE Transaction on Information Technology in Biomedicine, 13(6), 1031–1039.

    Article  Google Scholar 

  52. Atallah, L., King, R., Lo, B., & Yang, G. Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.

    Article  Google Scholar 

  53. Atallah, L., Wiik, A., Jones, G. G., Lo, B., Cobb, J. P., Amis, A., & Yang, G.-Z. (2012). Validation of an ear-worn sensor for gait monitoring using a force-plate instrumented treadmill. Gait & Posture, 35(4), 674–676.

    Article  Google Scholar 

  54. Dadashi, F., Mariani, B., Rochat, S., Büla, C., Santos-Eggimann, B., & Aminian, K. (2014). Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors, 14, 443–457.

    Article  Google Scholar 

  55. Hegde, N., & Sazonov, E. (2014). SmartStep: A fully integrated low-power insole monitor. Electronics, 3, 381–397.

    Article  Google Scholar 

  56. Hegde, N., Bries, M., & Sazonov, E. (2016). A comparative review of footwear-based wearable systems. Electronics, 5(3), 48.

    Article  Google Scholar 

  57. Huang, Y., Jirattigalachote, W., Cutkosky, M. R., Zhu, X., & Shull, P. B. (2016). Novel foot progression angle algorithm estimation via foot-worn magneto-inertial sensing. IEEE Transactions on Biomedical Engineering, 63, 2278–2285.

    Article  Google Scholar 

  58. Zhang, H., Zanotto, D., & Agrawal, S. K. (2017). Estimating CoP trajectories and kinematic gait parameters in walking and running using instrumented insoles. Robotics and Automation Letters IEEE, 2, 2159–2165.

    Article  Google Scholar 

  59. Home of pressure mapping, pressure imaging and pressure sensing. Available online: http://www.pressuremapping.com/. Accessed 23 July 2017.

  60. Tekscan. Tactile pressure measurement, pressure mapping systems, force sensors and measurement systems. Available online: https://www.tekscan.com/applications/force-sensitive-insole. Accessed 23 July 2017.

  61. Novel Quality in Measurement. Available online: http://www.novel.de/. Accessed 23 July 2017.

  62. The London Orthotic Consultancy. Available online: http://www.londonorthotics.co.uk/. Accessed 23 July 2017.

  63. Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D., & Tao, X. (2009). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine, 14, 767–775.

    Google Scholar 

  64. Smart Move active tracker. http://www.moticon.de/science/. Accessed 23 July 2017.

  65. Hurkmans, H. L., Bussmann, J. B., Selles, R. W., Horemans, H. L., Benda, E., Stam, H. J., & Verhaar, J. A. (2006). Validity of the Pedar mobile system for vertical force measurement during a seven-hour period. Journal of Biomechanics, 39(1), 110–118.

    Article  Google Scholar 

  66. Putti, A. B., Arnold, G. P., Cochrane, L., & Abboud, R. J. (2007). The pedar inshoe system: Repeatability and normal pressure values. Gait & Posture, 25(3), 401–405.

    Article  Google Scholar 

  67. Lee, N., Goonetilleke, R., Cheung, Y., & So, G. (2001). A flexible encapsulated MEMS pressure sensor system for biomechanical applications. Journal of Microsystem Technologies, 7, 55–62.

    Article  Google Scholar 

  68. Saponas, T. S., Lester, J., Hartung, C., & Kohno, T. (2006). Devices that tell on you: The Nike+iPod sport kit UW CSE (University of Washington, computer science and engineering) technical report 2006–12–06.

    Google Scholar 

  69. Stoggl, T., & Martiner, A. (2016). Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. Journal of Sports Sciences, 1–11.

    Google Scholar 

  70. Oerbekke, M. S., Stukstette, M. J., Schütte, K., de Bie, R. A., Pisters, M. F., & Vanwanseele, B. (2017). Concurrent validity and reliability of wireless instrumented insoles measuring postural balance and temporal gait parameters. Gait & Posture, 51, 116–124.

    Article  Google Scholar 

  71. European Project WIISEL. http://www.wiisel.eu/. Accessed 23 July 2017.

  72. Beddit. https://www.beddit.com/. Accessed 23 July 2017.

  73. EMFIT, the QS. https://www.emfit.com/sleep-monitor-heart-rate-variability. Accessed 23 July 2017.

  74. Like the S+ by Resmed. http://www.resmed.com/us/en/consumer/s-plus.html. Accessed 23 July 2017.

  75. Chen, S., Lach, J., Lo, B., & Yang, G.-Z. (2016). Toward pervasive gait analysis with wearable sensors: A systematic review. IEEE Jounal of Biomed Health Informatics, 20(6), 1521–1537.

    Article  Google Scholar 

  76. Karatsidis, A., Bellusci, G., Schepers, H. M., de Zee, M., Andersen, A. S., & Veltink, P. H. (2017). Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensor, 17, 75.

    Article  Google Scholar 

  77. Yang, S., & Li, Q. (2012). Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors, 12, 6012–6116.

    Google Scholar 

  78. Henriksen, M., Lund, H., Moe-Nilssen, R., Bliddal, H., & Danneskiod-Samsoe, B. (2004). Test-retest reliability of trunk accelerometric gait analysis. Gait & Posture, 19(3), 288–297.

    Article  Google Scholar 

  79. Moe-Nilssen, R., & Helbostad, J. L. (2004). Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics, 37, 121–126.

    Article  Google Scholar 

  80. Yang, Y.-R., Lee, Y.-Y., Cheng, S.-J., Lin, P.-Y., & Wang, R.-Y. (2008). Relationships between gait and dynamic balance in early Parkinson’s disease. Gait & Posture, 27(4), 611–615.

    Article  Google Scholar 

  81. Tura, A., Raggi, M., Rocchi, L., Cutti, A. G., & Chiari, L. (2010). Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. Journal of Neuroengineering and Rehabilitation, 7, 4.

    Article  Google Scholar 

  82. Tura, A., Rocchi, L., & Chiari, L. (2012). Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis. Journal of Neuroengineering and Rehabilitation, 9, 11.

    Article  Google Scholar 

  83. Yack, H. J., & Berger, R. C. (1993). Dynamic stability in the elderly: Identifying a possible measure. Journal of Gerontology, 48, M225–M230.

    Article  Google Scholar 

  84. Roley, S. S., DeLany, J. V., Barrows, C. J., & American Occupational Therapy Association Committee of Practice. (2008). Occupational therapy practice framework: Domain and practice, 2nd edition. The American Journal of Occupational Therapy, 62(6), 625–683.

    Article  Google Scholar 

  85. Mathie, M. J., Closter, A. C., Lovel, N. H., Veller, B. G., Lord, S. R., & Tiedemann, A. (2004). Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Journal of Telemedicine and Telecare, 10, 144–151.

    Article  Google Scholar 

  86. Nyan, M. N., Tay, F. E. H., Manimaran, M., & Seah, K. H. W. (2006). Garment-based detection of falls and activities of daily living using triaxial MEMS accelerometer. Journal of Physics: Conference Series, 34, 1059.

    Google Scholar 

  87. Hamilton, B. B., Laughlin, J. A., Fiedler, R. C., & Granger, C. V. (1994). Interrater reliability of the 7-level functional independence measure (FIM). Scandinavian Journal of Rehabilitation Medicine, 26(3), 115–119.

    Google Scholar 

  88. Sprint, G., Cook, D. J., Weeks, D. L., & Borisov, V. (2015). Predicting functional independence measure scores during rehabilitation with wearable inertial sensors. IEEE Access, 3, 1350–1366.

    Article  Google Scholar 

  89. Papi, E., Osei-Kuffour, D., Chen, Y. M. A., & McGregor, A. H. (2015). Use of wearable technology for performance assessment: A validation study. Medical Engineering and Physics, 37, 698–704.

    Article  Google Scholar 

  90. Cresswell, K., Shin, Y., & Chen, S. (2017). Quantifying variation in gait features from wearable inertial sensors using mixed effects models. Sensors, 17, 466.

    Article  Google Scholar 

  91. Tamura, T., Sekine, M., Miyoshi, H., Kuwae, Y., & Fujimoto, T. (2013). Wearable inertia sensor application in the rehabilitation field. Advances in Science and Technology, 85, 28–32.

    Article  Google Scholar 

  92. Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. (2011). Summary of the updated American geriatrics society/British geriatrics society clinical practice guideline for prevention of falls in older persons. Journal of the American Geriatrics Society, 59(1), 148–157.

    Google Scholar 

  93. Meijer, G. A. L., Westerterp, K. R., Verhoeven, F. M. H., Koper, H. B. M., & Hoor, F. (1991). Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Transactions on Biomedical Engineering, 38, 221–229.

    Article  Google Scholar 

  94. American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. (2001). Guidelines for the prevention of falls in older persons. Journal of the American Geriatrics Society, 49, 664–672.

    Article  Google Scholar 

  95. Podsiadlo, D., & Richardson, S. (1991). The timed-up-&-go: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39, 142–148.

    Article  Google Scholar 

  96. Berg, K. O., Maki, B. E., Williams, J. I., Holliday, P. J., & Wood-Dauphinee, S. L. (1992). Clinical and laboratory measures of postural balance in an elderly population. Archives of Physical Medicine and Rehabilitation, 73(11), 1073–1080.

    Google Scholar 

  97. Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., & Horak, F. B. (2010). The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(2), 171–176.

    Article  Google Scholar 

  98. Thrane, G., Joakimsen, R. M., & Thornquist, E. (2007). The association between timed up and go test and history of falls: The tromso study. BMC Geriatrics, 7(1), 1.

    Article  Google Scholar 

  99. Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Physical Therapy, 80(9), 896–903.

    Google Scholar 

  100. Higashi, Y., Yamakoshi, K., Fujimoto, T., Sekine, M., & Tamura, T. (2008). Quantitative evaluation of movement using the timed up-and-go test (Citation).

    Google Scholar 

  101. Greene, B. R., O’Donovan, A., Romero-Ortuno, R., Cogan, L., Scanaill, C. N., & Kenny, R. A. (2010). Quantitative falls risk assessment using the timed up and go test. IEEE Transactions on Biomedical Engineering, 57(12), 2918–2926.

    Article  Google Scholar 

  102. Zakaria, N. A., Kuwae, Y., Tamura, T., Mnato, K., & Kanaya, S. (2015). Quantitative analysis of fall risk using TUG test computer methods. Computer Methods in Biomechanics Biomedical Engineering, 18(4), 426–437.

    Article  Google Scholar 

  103. Salarian, A., Horak, F. B., Zampieri, C., Carlson-Kuhta, P., Nutt, J. G., & Aminian, K. (2010). iTUG, a sensitive and reliable measure of mobility. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 303–310.

    Article  Google Scholar 

  104. Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Giladi, N., & Hausdorff, J. M. (2011). An instrumented timed up and go: The added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiological Measurement, 32, 2003–2018.

    Article  Google Scholar 

  105. Berg, K. O., Wood-Dauphinee, S. L., Williams, J. I., & Gayton, D. (1989). Measuring balance in elderly: Preliminary development of an instrument. Physiotherapy Canada, 41, 304–311.

    Article  Google Scholar 

  106. Auvinet, A., Berrut, G., Touzard, C., Moutel, L., Collet, N., Chaleil, D., & Barrey, E. (2002). Reference data for normal subjects obtained with an accelerometric device. Gait and Posture, 16, 124–134.

    Article  Google Scholar 

  107. Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Age-related differences in walking stability. Age and Aging, 32, 137–142.

    Article  Google Scholar 

  108. Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait and Posture, 18, 1–10.

    Article  Google Scholar 

  109. Cho, C. Y., & Kamen, G. (1998). Detecting balance deficits in frequent fallers using clinical and quantitative evaluation tools. Journal of the American Geriatrics Society, 46, 426–430.

    Article  Google Scholar 

  110. Ganea, R., Paraschiv-Ionescu, A., Büla, C., Rochat, S., & Aminian, K. (2011). Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Medical Engineering & Physics, 33, 1086–1093.

    Article  Google Scholar 

  111. Shany, T., Redmond, S. J., Narayanan, M. R., & Lovell, N. H. (2012). Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sensors Journal, 12, 658–670.

    Article  Google Scholar 

  112. Shany, T., Redmond, S. J., Marschollek, M., & Lovell, N. H. (2012). Assessing fall risk using wearable sensors: A practical discussion. Journal of Gerontology and Geriatrics, 45, 694–706.

    Google Scholar 

  113. Tao, W., Liu, T., Xheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors, 12, 2255–2283.

    Article  Google Scholar 

  114. Howcroft, J., Kofman, J., & Lemaire, E. D. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of NeuroEngineering Rehabilitation, 10, 91.

    Article  Google Scholar 

  115. Sprint, G., Cook, D. J., & Weeks, D. L. (2015). Toward automating clinical assessments: A survey of the timed up and go. IEEE Reviews in Biomedical Engineering, 8, 64–77.

    Article  Google Scholar 

  116. Zarzeczny, R., Nawrat-Szołtysik, A., Polak, A., Maliszewski, J., Kiełtyka, A., Matyja, B., Dudek, M., Zborowska, J., & Wajdman, A. (2017). Aging effect on the instrumented timed-up-and-go test variables in nursing home women aged 80–93 years. Biogerontology, 18(4), 651–663.

    Article  Google Scholar 

  117. Robben, S., Englebienne, G., & Kröse, B. (2017). Delta features from ambient sensor data are good predictors of change in functional health. IEEE Journal of Biomedical and Health Informatics, 21, 986–993.

    Article  Google Scholar 

  118. Godfrey, A. (2017). Wearables for independent living in older adults: Gait and falls. Maturitas, 100, 16–26.

    Article  Google Scholar 

  119. Lindemann, U., Hock, A., Stuber, M., Keck, W., & Becker, C. (2005). Evaluation of a fall detector based on accelerometers: A pilot study. Medical & Biological Engineering & Computing, 43, 548–551.

    Article  Google Scholar 

  120. Bourke, A. K., O’Donovan, K. J., & Ólaighin, G. (2008). The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. Medical Engineering & Physics, 30(7), 937–946.

    Article  Google Scholar 

  121. Noury, N., Rumeau, P., Bourke, A. K., Ólaighin, G., & Lundy, J. E. (2008). A proposal for the classification and evaluation of fall detectors. IRBM, 29(6), 340–349.

    Article  Google Scholar 

  122. Bourke, A. K., O’Brien, J. V., & Lyons, G. M. (2007). Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture, 26(2), 194–199.

    Article  Google Scholar 

  123. Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10, 156–167.

    Article  Google Scholar 

  124. Bourke, A. K., & Lyons, G. M. (2008). A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical & Biological Engineering & Computing, 30(1), 84–90.

    Google Scholar 

  125. Dinh, A., Shi, Y., Teng, D., Ralhan, A., Chen, L., Bello-Haas, V. D., Basran, J., Ko, S. B., & McCrowsky, C. (2009). A Fall and near-fall assessment and evaluation system. The Open Biomedical Engineering Journal, 3, 1–7.

    Article  Google Scholar 

  126. Kangas, M., Konttila, A., Lindgren, P., Winblad, I., & Jämsä, T. (2008). Comparison of low-complexity fall detection algorithms for body attached accelerometer. Gait & Posture, 28, 285–291.

    Article  Google Scholar 

  127. Kangas, M., Vikman, I., Wiklander, J., Lindgren, P., Nyberg, L., & Jämsä, T. (2009). Sensitivity and specificity of fall detection in people aged 40 years and over. Gait & Posture, 29(4), 571–574.

    Article  Google Scholar 

  128. Sixsmith, A., & Johnson, N. (2004). A smart sensor to detect the falls of the elderly. IEEE Pervasive Computing, 3(2), 42–47.

    Article  Google Scholar 

  129. Brunnstrom, S. (1970). Movement therapy in hemiplegia: A neurophysiological approach. New York: Harper & Row.

    Google Scholar 

  130. Abaid, N., Cappa, P., Palermo, E., Petrarca, M., & Porfiri, M. (2013). Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes. PLoS One, 8(9), 73152.

    Article  Google Scholar 

  131. Guo, Y., Wu, D., Liu, G., Zhoo, G., Huang, B., & Wang, L. (2012). A low-cost body inertia-sensing network for practical gait discrimination of hemiplegia patients. Telemedicine and e-Health, 18(10), 748–754.

    Article  Google Scholar 

  132. Guo, Y., Zhao, G., Liu, Q., Mei, Z., Ivanov, K., & Wang, L. (2013). Balance and knee extensibility evaluation of hemiplegic gait using an inertia body sensor network. Biomedical Engineering Online, 12, 83.

    Article  Google Scholar 

  133. Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J. G., & Bonato, P. (2010). A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proceedings of the IEEE, 98, 450–461.

    Article  Google Scholar 

  134. Functional ability score. https://www.actionforme.org.uk/uploads/pdfs/functional-ability-scale.pdf

  135. Din, S. D., Patel, S., Cobelli, C., & Bonato, P. (2011). Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors. 2011 annual international conference of the Engineering in Medicine and Biology Society (EMBC), Boston, 30 August–3 September 2011, pp. 5839–5842.

    Google Scholar 

  136. Uswatte, G., Foo, W. L., Olmstead, H., Lopez, K., Holand, A., & Simms, L. B. (2005). Ambulatory monitoring of arm movement using accelerometry: An objective measure of upper-extremity rehabilitation in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 86, 1498–1501.

    Article  Google Scholar 

  137. Noorkõiv, M., Rodgers, H., & Price, C. I. (2014). Accelerometer measurement of upper extremity movement after stroke: A systematic review of clinical studies. Journal of Neuroengineering and Rehabilitation, 11, 144.

    Article  Google Scholar 

  138. Zhang, Z., Fang, Q., & Gu, X. (2014). Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Systems with Applications, 41, 1973–1980.

    Article  Google Scholar 

  139. Zhang, Z., Liparulo, L., Panella, M., Gu, X., & Fang, Q. (2015). A fuzzy kernel motion classifier for autonomous stroke rehabilitation. IEEE Journal of Biomedical and Health Informatics, 20, 893–901.

    Article  Google Scholar 

  140. Zhang, Z., Fang, Q., & Gu, X. (2016). Objective assessment of upper limb mobility for post-stroke rehabilitation. IEEE Transactions on Biomedical Engineering, 63(4), 859–868.

    Google Scholar 

  141. Yu, L., Xiong, D., Guo, L., & Wang, J. (2016). A compressed sensing-based wearable sensor network for quantitative assessment of stroke patients. Sensors, 16(2), 202.

    Article  Google Scholar 

  142. Maetzler, W., Dormingos, J., Srulijes, K., Ferreira, J. J., & Bloem, B. R. (2013). Quantitative wearable sensors for objective assessment of Parkinson’s disease. Movement Disorders, 28(12), 1628–1637.

    Article  Google Scholar 

  143. Hobert, M. A., Maetzler, W., Aminian, K., & Chiari, L. (2014). Technical and clinical view on amburatory assessment on Parkinson’s disease. Acta Neurologica Scandinavica, 130(3), 139–147.

    Article  Google Scholar 

  144. Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., & Horak, F. B. (2010). The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(2), 171–176.

    Article  Google Scholar 

  145. Manchi, M., King, L., Salarian, A., Holmstrim, L., Mcnames, J., & Horak, F. B. (2012). Mobility lab to assess balance and gait with synchronized body-worn sensors. Journal of Bioengineering and Biomedcal Science, 2012, S1.

    Google Scholar 

  146. Mancini, M., & Horak, F. B. (2016). Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Review of Medical Devices, 13(5), 455–462.

    Article  Google Scholar 

  147. Mariani, B., Jiménez, M. C., Vingerhoets, F. J., & Aminian, K. (2013). On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 60(1), 155–158.

    Article  Google Scholar 

  148. El-Gohary, M., Pearson, S., McNames, J., Mancini, M., Horak, F., Mellone, S., & Chiari, L. (2014). Continuous monitoring of turning in patients with movement disability. Sensors, 14(1), 356–396.

    Article  Google Scholar 

  149. Pham, M. H., Elshehabi, M., Haertner, L., Heger, T., Hobert, M. A., Faber, G. S., Salkovic, D., Ferreira, J. J., Berg, D., Sanchez-Ferro, Á., van Dieën, J. H., & Maetzler, W. (2017). Algorithm for turning detection and analysis validated under home-like conditions in patients with Parkinson’s disease and older adults using a 6 degree-of-freedom inertial measurement unit at the lower back. Frontiers in Neurology, 8, Article 135.

    Google Scholar 

  150. Novak, D., Goršič, M., Podobnik, J., & Munih, M. (2014). Toward real-time automated detection of turns during gait using wearable inertial measurement units. Sensors, 14, 18800–18822.

    Article  Google Scholar 

  151. Salarian, A., Russmann, H., Vingerhoets, F. J. G., Burkhard, P. R., & Aminian, K. (2007). Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 54(12), 2296–2299.

    Article  Google Scholar 

  152. Ferrari, A., Ginis, P., Hardegger, M., Casamassima, F., Rocchi, L., & Chiari, L. (2016). A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 764–773.

    Article  Google Scholar 

  153. Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., & Faundez-Zanuy, M. (2015). Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 508–516.

    Google Scholar 

  154. Zeng, W., Liu, F., Wang, Q., Wang, Y., Ma, L., & Yu, Z. (2016). Parkinson’s disease classification using gait analysis via deterministic learning. Neuroscience Letters, 633, 268–278.

    Article  Google Scholar 

  155. Manson, A. J., Brown, P., O’Sullivan, J. D., Asselman, P., Buckwell, D., & Lees, A. J. (2000). An ambulatory dyskinesia monitor. Journal of Neurology, Neurosurgery, and Psychiatry, 68(1), 96–201.

    Google Scholar 

  156. Bhidayasiri, R., Sringean, J., Taechalertpaisarn, P., & Thanawattano, C. (2016). Capturing nighttime symptoms in Parkinson disease: Technical development and experimental verification of inertial sensors for nocturnal hypokinesia. Journal of Rehabilitation Research and Development, 53(4), 487–498.

    Article  Google Scholar 

  157. Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: Insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission, 122(3), 403–410.

    Article  Google Scholar 

  158. Bryant, M. S., Rintala, D. H., Hou, J. G., Collins, R. L., & Protas, E. J. (2016). Gait variability in Parkinson's disease: Levodopa and walking direction. Acta Neurologica Scandinavica, 134(1), 83–86.

    Article  Google Scholar 

  159. Mestre, T. A., Sidiropoulos, C., Hamani, C., Poon, Y.-Y., Lozano, A. M., Lang, A. E., & Moro, E. (2016). Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Movement Disorders, 31(10), 1570–1574.

    Article  Google Scholar 

  160. Rodríguez-Martín, D., Pérez-López, C., Samà, A., Cabestany, J., & Català, A. (2013). A wearable inertial measurement unit for long-term monitoring in the dependency care area. Sensors, 13, 14079–14104.

    Article  Google Scholar 

  161. Sánchez-Ferro, Á., Elshehabi, M., Godinho, C., Salkovic, D., Hobert, M. A., Domingos, J., van Uem, J. M. T., Ferreira, J. J., & Maetzler, W. (2016). New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Movement Disorders, 31(9), 1283–1292.

    Article  Google Scholar 

  162. Mancini, M., & Horak, F. B. (2016). Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Review of Medical Devices, 13(5), 455–462.

    Article  Google Scholar 

  163. Tzallas, A., Tsipouras, M., Rigas, G., Tsalikakis, D., Karvounis, E., Chondrogiorgi, M., Psomadellis, F., Cancela, J., Pastorino, M., Waldmeyer, M., Konitsiotis, S., & Fotiadis, D. (2014). PERFORM: A system for monitoring assessment and management of patients with Parkinson’s disease. Sensors, 14, 21329–21357.

    Article  Google Scholar 

  164. Inertial sensors Parkinson’s disease REMPARK infoWearable devices. http://rempark.eu/. Accessed 29 July 2017.

  165. Sant’Anna, A., Salarian, A., & Wickström, N. (2011). A new measure of movement symmetry in early Parkinson’s disease patients using symbolic processing of inertial sensor data. IEEE Transactions on Biomedical Engineering, 58(7), 2127–2135.

    Article  Google Scholar 

  166. Del Din, S., Godfrey, A., Mazzà, C., Lord, S., & Rochester, L. (2016). Free-living monitoring of Parkinson’s disease: Lessons from the field. Movement Disorders, 31(9), 1293–1313.

    Article  Google Scholar 

  167. Lee, W., Evans, A., & Williams, D. R. (2016). Validation of a smartphone application measuring motor function in Parkinson’s disease. Journal of Parkinson’s Disease, 6(2), 371–382.

    Article  Google Scholar 

  168. Tunca, C., Pehlivan, N., Ak, N., Arnrich, B., Salur, G., & Ersoy, C. (2017). Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors, 17, 825.

    Article  Google Scholar 

  169. Ginis, P., Heremans, E., Ferrari, A., Dockx, K., Canning, C. G., & Nieuwboer, A. (2017). Prolonged walking with a wearable system providing intelligent auditory input in people with Parkinson’s disease. Frontiers in Neurology, 8, Article 128, 201.

    Google Scholar 

  170. Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). Association between community ambulation walking patterns and cognitive function in patients with Parkinson’s disease: Further insights into motor-cognitive links. Parkinson’s Disease, 2015, Article 547065.

    Google Scholar 

  171. Suzuki, M., Mitoma, H., & Yoneyama, M. (2017). Quantitative analysis of motor status in Parkinson’s disease using wearable devices: From methodological considerations to problems in clinical applications. Parkinson’s Disease, 2017, Article 6139716.

    Google Scholar 

  172. Espay, A. J., Bonato, P., Nahab, F. B., Maetzler, W., Dean, J. M., Klucken, J., Eskofier, B. M., Merola, A., Horak, F., Lang, A. E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne, M., Little, M. A., Litvan, I., Simuni, T., Ray Dorsey, E., Burack, M. A., Kubota, K., Kamondi, A., Godinho, C., Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J. M., Bloem, B. R., & Papapetropoulos, S. (2016). Technology in Parkinson’s disease: Challenges and opportunities. Movement Disorders, 31, 1272–1282.

    Article  Google Scholar 

  173. Wong, T. C., Webster, J. G., Montoye, H. J., & Washburn, R. (1981). Portable accelerometer device for measuring human energy expenditure. IEEE Transactions on Biomedical Engineering, 28(6), 467–471.

    Article  Google Scholar 

  174. Montoye, H. J., Washburn, R., Servais, S., Ertl, A., Webster, J. G., & Nagle, F. J. (1983). Estimation of energy expenditure by a portable accelerometer. Medicine and Science in Sports and Exercise, 15(5), 403–407.

    Article  Google Scholar 

  175. Chen, K. Y., & Sun, M. (1997). Improving energy expenditure estimation by using triaxial accelerometer. Journal of Applied Physiology, 83, 2112–2122.

    Google Scholar 

  176. Chen, K. Y., & Bassett, D. R., Jr. (2005). The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise, 37(11–Suppl), S490–S500.

    Article  Google Scholar 

  177. Bouarfa, L., Atallah, L., Kwasnicki, R. M., Pettitt, C., Frost, G., & Yang, G.-Z. (2014). Predicting free-living energy Expenditure using a miniaturized ear-worn sensor: An evaluation against doubly labeled water. IEEE Transactions on Biomedical Engineering, 61, 566–575.

    Article  Google Scholar 

  178. Altini, M., Penders, J., & Amft, O. (2016). Estimating oxygen uptake during nonsteady-state activities and transitions using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 20, 469–475. ISSN 2168-2194.

    Article  Google Scholar 

  179. Beltrame, T., Amelard, R., Wong, A., & Hughson, R. L. (2017). Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Scientific Reports, 7, 45738.

    Article  Google Scholar 

  180. Sazonov, E., Hegde, N., Browning, R. C., Melanson, E. L., & Sazonova, N. A. (2015). Posture and activity recognition and energy expenditure estimation in a wearable platform. IEEE Journal of Biomedical and Health Informatics, 19, 1339–1346.

    Article  Google Scholar 

  181. Samy, L., Huang, M.-C., Liu, J. J., Xu, W., & Sarrafzadeh, M. (2014). Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sensors Journal, 14(7), 2092–2101.

    Article  Google Scholar 

  182. Grigg-Damberger, M. M. (2016). The visual scoring of sleep in infants 0 to 2 months of age. Journal of Clinical Sleep Medicine, 12(3), 429–445.

    Article  Google Scholar 

  183. Tal, A., Shinar, Z., Shaki, D., Codish, S., & Goldbart, A. (2017). Validation of contact-free sleep monitoring device with comparison to polysomnography. Journal of Clinical Sleep Medicine, 13(3), 517–522.

    Article  Google Scholar 

  184. Roetenberg, D., Luinge, H., & Slycke, P. (2013). Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Enschede: Xsens technologies.

    Google Scholar 

  185. Brigante, C. M. N., Abbate, N., Basile, A., Faulisi, A. C., & Sessa, S. (2011). Towards miniaturization of a MEMS-based. IEEE Transations on Industrial Electronics, 58(8), 3234–3241.

    Article  Google Scholar 

  186. Zheng, Y., Wong, T. C. H., Leung, B. H. K., & Poon, C. C. Y. (2016). Unobtrusive and multimodal wearable sensing to quantify anxiety. IEEE Sensors Journal, 16, 3689–3696. ISSN 1530-437X.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyo Tamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamura, T. (2018). Wearable Units. In: Tamura, T., Chen, W. (eds) Seamless Healthcare Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-69362-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69362-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69361-3

  • Online ISBN: 978-3-319-69362-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics