Abstract
Wearable inertial sensors have been extensively developed in recent years. Inertial sensors, including accelerometers, gyroscopic sensors, and magnetic sensors, can be embedded in parts of the body, such as the trunk, legs, arms, etc., to monitor motion-related human activities. Inertial sensors are the subject of research as well as of clinical trials. Because sensors must have sufficient accuracy and validity, evaluation of sensor signals is of interest. In this chapter, we examine the technical principles of several types of inertial sensors and provide an assessment of these sensors for patient rehabilitation in clinical practice and sport.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dong, P., Li, X., Yang, H., Bao, H., Zhou, W., Li, S., & Feng, S. (2008). High-performance monolithic triaxial piezoresisitive shock accelerometers. Sensors and Actuators A: Physical, 141(2), 339–346.
Zou, Q., Tan, W., Kim, E. S., & Loeb, G. E. (2008). Single- and triaxial piezoelectric-bimorph accelerometers. Journal of Microelectromechnical Systems, 17(1), 45–57.
Vu, H., Palacios, A., In, V., Longhini, P., & Nelf, J. D. (2011). A drive-free vibratory gyroscope. Chaos, 21, 013103.
Sassen, S., Voss, R., Schalk, J., Stenzei, E., Gleissner, T., Gruenberger, R., Neubauer, F., Ficker, W., Kupke, W., Bauer, K., & Rose, M. (2000). Tuning for silicon angular rate sensor with enhanced performance for automotive applications. Sensors and Actuators A: Physical, 83(1–3), 80–84.
Lowe, S. A., & ÓLaighin, G. (2014). Monitoring human health behaviour in one’s living environment: A technological review. Medical Engineering & Physics, 36(2), 147–168.
Tsai, N.-C., & Sue, C.-Y. (2008). Fabrication and analysis of a micro-machined tri-axis gyroscope. Journal of Micromechanics and Microengineering, 18(11), 115014.
Dunzhu Xia, D., Yu, C., & Kong, L. (2014). The development of micromachined gyroscope structure and circuitry technology. Sensors, 14(1), 1394–1473. https://doi.org/10.3390/s140101394.
Giansanti, D., Macellari, V., Maccioni, G., & Cappozzo, A. (2003). Is it feasible to reconstruct body segment 3-D position and orientation using accelerometric data? IEEE Transactions on Biomedical Engineering, 50(4), 476–483.
Roetenberg, D., Luinge, H. J., Baten, C. T. M., & Veltink, P. H. (2005). Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 395–405.
Roetenberg, D., Slycke, P. J., & Vetink, P. H. (2007). Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Transactions on Biomedical Engineering, 54(5), 883–890.
Lenz, J., & Edelstein, A. S. (2006). Magnetic sensors and their applications. IEEE Sensors Journal, 6, 631–649.
Boona, S. R., Myers, R. C., & Heremans, J. P. (2014). Spin caloritronics. Energy and Environmental Science, 7, 885–910.
Randjelovic, Z. B., Kayal, M., Popovic, R., & Blanchard, H. (2002). Highly sensitive Hall magnetic sensor microsystem in CMOS technology. IEEE Journal Solid-State Circuits, 37, 151–159.
Tumanski, S. (2007). Induction coil sensors – A review. Measurements Science and Technology, 18, R31–R46.
Mohri, K. (1994). Application of amorphous magnetic wires to computer peripherals. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 185(1–2), 141–145.
Mohri, K., Panina, L. V., Uchiyama, T., Bushida, K., & Noda, M. (1995). Sensitive and quick response micro magnetic sensor utilizing magneto-impedance in Co-rich amorphous wires. IEEE Transactions on Magnetics, 31(2), 1266–1275.
Kanno, J. T., Mohri, K., Yagi, T., Uchiyama, T., & Shen, L. P. (1997). Amorphous wire MI micro sensor using CMOS IC multivibrator. IEEE Transactions on Magnetics, 33(5), 3353–3360.
Uchiyama, T., Nakayama, S., Mohri, K., & Bushida, K. (2009). Biomagnetic field detection using very high sensitivity magnetoimpedance sensors for medical applications. Physica Status Solidi A: Applications and Materials Science, 206, 639–643.
Kádár, Z., Bossche, A., Sarro, P. M., & Mollinger, J. R. (1998). Magnetic-field measurements using an integrated resonant magnetic-field sensor. Sensors and Actuators A, 70, 225–232.
Guangtao, D., Xiangdong, C., Qibin, L., Hui, L., & Huihuil, G. (2010). MEMS magnetic field sensor based on silicon bridge structure. Journal of Semiconductors, 31(10), 104011.
Herrera-May, A. L., Aguilera-Cortés, L. A., García-Ramírez, P. J., & Manjarrez, E. (2009). Resonant magnetic field sensors based On MEMS technology. Sensors, 9(10), 7785–7813. https://doi.org/10.3390/s91007785.
Dennis, J. O., Ahmad, F., Khir, M. H. B. M., & Hamid, N. H. B. (2015). Optical characterization of Lorentz force based CMOS-MEMS magnetic field sensor. Sensors, 15, 18256–18269. https://doi.org/10.3390/s150818256.
Herrera-May, A. L., Soler-Balcazar, J. C., Vázquez-Leal, H., Martínez-Castillo, J., Vigueras-Zuñiga, M. O., & Aguilera-Cortés, L. A. (2016). Recent advances of MEMS resonators for Lorentz force based magnetic field sensors: Design, applications and challenges. Sensors, 16(9), 1359. https://doi.org/10.3390/s16091359.
Bortz, J. E. (1971). A new mathematical formulation for strapdowm inertial navigation. IEEE Transactions on Aerospace and Electronic Systems, 7, 61–66.
Mayagoitia, R. E., Nene, A. V., & Veltink, P. H. (2002). Accelerometer and rate gyroscope measurement of kinematics: An inexpensive alternative to optical analysis systems. Journal of Biomechanics, 35(4), 537–542.
Williamson, R., & Andrews, B. J. (2001). Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes. Medical and Biological Engineering and Computing, 39, 1–9.
Zhu, R., & Zhou, Z. (2004). A real-time articulated human motion tracking using tri-axial internal/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engeering, 12(2), 295–302.
Sabatini, A. M. (2006). Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Transactions on Biomedical Engineering, 53, 1346–1356.
Cooper, G., Sheret, I., McMillian, L., Siliverdis, K., Sha, N., Hodgins, D., Kenney, L., & Howard, D. (2009). Inertial sensor-based knee flexion/extension angle estimation. Journal of Biomechanics, 42(16), 2678–2685.
Takeda, R., Tadano, S., Natorigawa, A., Todoh, M., & Yoshinari, S. (2009). Gait posture estimation using wearable acceleration and gyro sensors. Journal of Biomechanics, 42, 2486–2494.
Zhang, Z., Huang, Z., & Wu, J. (2010). Ambulatory hip angle estimation using Gaussian particle filter. Journal of Signal Processing Systems, 58, 341–357.
Togawa, T., Tamura, T, & Ake Oberg, P. (2011). Biomedical sensors and instruments (2nd ed., pp. 221–224). New York: CRC Press .
Spolek, G. A., & Lippert, F. G. (1976). An instrument shoe – A portable force measurement device. Journal of Biomechanics, 9, 779–783.
Miyazaki, S., & Iwakua, H. (1978). Foot-force measurement device for clinical assessment of pathological gait. Medical & Biological Engineering & Computing, 16, 429–436.
Miyazaki, S., & Ishida, A. (1984). Capacitive transducer for continuous measurement of vertical foot force. Medical & Biological Engineering & Computing, 22, 309–316.
Tekscan Co. https://www.tekscan.com/. Accessed 30 June 2017.
Catalfamo, P., Moser, D., Ghoussayni, S., & Ewins, D. (2008). Detection of gait events using an F-Scan in-shoe pressure measurement system. Gait & Posture, 28, 420–426.
Nicolopoulos, C. S., Anderson, E. G., Solomonidis, S. E., & Giannoudis, P. V. (2000). Evaluation of the gait analysis FSCAN pressure systems: Clinical too or toy? The Foot, 10(3), 124–130.
Liedtke, C., Fokkenrood, S. A., Menger, J. T., van der Kooij, H., & Veltink, P. H. (2007). Evaluation of instrumented shoes for ambulatory assessment of ground reaction forces. Gait & Posture, 26(1), 39–47.
Healy, A., Burgess-Walker, P., Naemi, R., & Chockalingam, N. (2012). Repeatability of WalkinSense® in shoe pressure measurement system: A preliminary study. The Foot, 22, 35–39.
Morris S. J. (2004, June). A shoe-integrated sensor system for wireless gait analysis and real-time therapeutic feedback. PhD thesis, MIT Mechanical Engineering Department.
Bamberg, S. J. M., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413–423.
Harada, T., Sakata, A., Mori, T., & Sato, T. (2000). Sensor pillow system: Monitoring respiration and body movement in sleep. IEEE International Conference on Intelligent Robots and Systems, 1, 351–356.
Harada, T., Sato, T., & Mori, T. (2002). Estimation of bed ridden human’s gross and slight movement based on pressure sensors distribution bed. Proceedings of IEEE international conference on Robotics and Automation, ICRA ’02, 3795–3800.
Chen, Y., & Chen, W. (2011). Long-term tracking of a patient’s health condition based on pulse rate dynamics during sleep. Annals of Biomedical Engineering, 39(12), 2922–2934.
Lokavee, S., Puntheeranurak, T., & Kerdcharoen, T. (2012). Sensor pillow and bed sheet system: Unconstrained monitoring of respiration rate and posture movements during sleep. IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, 1564–1568.
Kortelainen, J. M., van Gils, M., & Pärkkä, J. (2012). Multichannel bed pressure sensor for sleep monitoring. Computing in Cardiology, 39, 313–316.
Huang, Y., Xu, J., Yu, B., & Shull, P. B. (2016). Validity of FitBit, Jawbone UP, Nike+ and other wearable devices for level and stair walking. Gait & Posture, 48, 36–41.
Fokkema, T., Kooiman, T. J. M., Krijnen, W. P., van der Shans, C. P., & de Groot, M. (2017). Reliability and validity of ten consumer activity trackers depend on walking speed. Medicine and Science in Sports and Exercise, 49(4), 793–800.
Wen, D., Zhang, X., Liu, X., & Lei, J. (2017). Evaluating the consistency of current mainstream wearable devices in health monitoring: A comparison under free-living conditions. Eysenbach G, ed. Journal of Medical Internet Research, 19(3), e68. https://doi.org/10.2196/jmir.687.
Atallah, L., Lo, B., Ali, R., & Yang, G.-Z. (2009). Real-time activity classification using ambient and wearable sensors. IEEE Transaction on Information Technology in Biomedicine, 13(6), 1031–1039.
Atallah, L., King, R., Lo, B., & Yang, G. Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.
Atallah, L., Wiik, A., Jones, G. G., Lo, B., Cobb, J. P., Amis, A., & Yang, G.-Z. (2012). Validation of an ear-worn sensor for gait monitoring using a force-plate instrumented treadmill. Gait & Posture, 35(4), 674–676.
Dadashi, F., Mariani, B., Rochat, S., Büla, C., Santos-Eggimann, B., & Aminian, K. (2014). Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors, 14, 443–457.
Hegde, N., & Sazonov, E. (2014). SmartStep: A fully integrated low-power insole monitor. Electronics, 3, 381–397.
Hegde, N., Bries, M., & Sazonov, E. (2016). A comparative review of footwear-based wearable systems. Electronics, 5(3), 48.
Huang, Y., Jirattigalachote, W., Cutkosky, M. R., Zhu, X., & Shull, P. B. (2016). Novel foot progression angle algorithm estimation via foot-worn magneto-inertial sensing. IEEE Transactions on Biomedical Engineering, 63, 2278–2285.
Zhang, H., Zanotto, D., & Agrawal, S. K. (2017). Estimating CoP trajectories and kinematic gait parameters in walking and running using instrumented insoles. Robotics and Automation Letters IEEE, 2, 2159–2165.
Home of pressure mapping, pressure imaging and pressure sensing. Available online: http://www.pressuremapping.com/. Accessed 23 July 2017.
Tekscan. Tactile pressure measurement, pressure mapping systems, force sensors and measurement systems. Available online: https://www.tekscan.com/applications/force-sensitive-insole. Accessed 23 July 2017.
Novel Quality in Measurement. Available online: http://www.novel.de/. Accessed 23 July 2017.
The London Orthotic Consultancy. Available online: http://www.londonorthotics.co.uk/. Accessed 23 July 2017.
Shu, L., Hua, T., Wang, Y., Li, Q., Feng, D., & Tao, X. (2009). In-shoe plantar pressure measurement and analysis system based on fabric pressure sensing array. IEEE Transactions on Information Technology in Biomedicine, 14, 767–775.
Smart Move active tracker. http://www.moticon.de/science/. Accessed 23 July 2017.
Hurkmans, H. L., Bussmann, J. B., Selles, R. W., Horemans, H. L., Benda, E., Stam, H. J., & Verhaar, J. A. (2006). Validity of the Pedar mobile system for vertical force measurement during a seven-hour period. Journal of Biomechanics, 39(1), 110–118.
Putti, A. B., Arnold, G. P., Cochrane, L., & Abboud, R. J. (2007). The pedar inshoe system: Repeatability and normal pressure values. Gait & Posture, 25(3), 401–405.
Lee, N., Goonetilleke, R., Cheung, Y., & So, G. (2001). A flexible encapsulated MEMS pressure sensor system for biomechanical applications. Journal of Microsystem Technologies, 7, 55–62.
Saponas, T. S., Lester, J., Hartung, C., & Kohno, T. (2006). Devices that tell on you: The Nike+iPod sport kit UW CSE (University of Washington, computer science and engineering) technical report 2006–12–06.
Stoggl, T., & Martiner, A. (2016). Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements. Journal of Sports Sciences, 1–11.
Oerbekke, M. S., Stukstette, M. J., Schütte, K., de Bie, R. A., Pisters, M. F., & Vanwanseele, B. (2017). Concurrent validity and reliability of wireless instrumented insoles measuring postural balance and temporal gait parameters. Gait & Posture, 51, 116–124.
European Project WIISEL. http://www.wiisel.eu/. Accessed 23 July 2017.
Beddit. https://www.beddit.com/. Accessed 23 July 2017.
EMFIT, the QS. https://www.emfit.com/sleep-monitor-heart-rate-variability. Accessed 23 July 2017.
Like the S+ by Resmed. http://www.resmed.com/us/en/consumer/s-plus.html. Accessed 23 July 2017.
Chen, S., Lach, J., Lo, B., & Yang, G.-Z. (2016). Toward pervasive gait analysis with wearable sensors: A systematic review. IEEE Jounal of Biomed Health Informatics, 20(6), 1521–1537.
Karatsidis, A., Bellusci, G., Schepers, H. M., de Zee, M., Andersen, A. S., & Veltink, P. H. (2017). Estimation of ground reaction forces and moments during gait using only inertial motion capture. Sensor, 17, 75.
Yang, S., & Li, Q. (2012). Inertial sensor-based methods in walking speed estimation: A systematic review. Sensors, 12, 6012–6116.
Henriksen, M., Lund, H., Moe-Nilssen, R., Bliddal, H., & Danneskiod-Samsoe, B. (2004). Test-retest reliability of trunk accelerometric gait analysis. Gait & Posture, 19(3), 288–297.
Moe-Nilssen, R., & Helbostad, J. L. (2004). Estimation of gait cycle characteristics by trunk accelerometry. Journal of Biomechanics, 37, 121–126.
Yang, Y.-R., Lee, Y.-Y., Cheng, S.-J., Lin, P.-Y., & Wang, R.-Y. (2008). Relationships between gait and dynamic balance in early Parkinson’s disease. Gait & Posture, 27(4), 611–615.
Tura, A., Raggi, M., Rocchi, L., Cutti, A. G., & Chiari, L. (2010). Gait symmetry and regularity in transfemoral amputees assessed by trunk accelerations. Journal of Neuroengineering and Rehabilitation, 7, 4.
Tura, A., Rocchi, L., & Chiari, L. (2012). Recommended number of strides for automatic assessment of gait symmetry and regularity in above-knee amputees by means of accelerometry and autocorrelation analysis. Journal of Neuroengineering and Rehabilitation, 9, 11.
Yack, H. J., & Berger, R. C. (1993). Dynamic stability in the elderly: Identifying a possible measure. Journal of Gerontology, 48, M225–M230.
Roley, S. S., DeLany, J. V., Barrows, C. J., & American Occupational Therapy Association Committee of Practice. (2008). Occupational therapy practice framework: Domain and practice, 2nd edition. The American Journal of Occupational Therapy, 62(6), 625–683.
Mathie, M. J., Closter, A. C., Lovel, N. H., Veller, B. G., Lord, S. R., & Tiedemann, A. (2004). Accelerometry: Providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Journal of Telemedicine and Telecare, 10, 144–151.
Nyan, M. N., Tay, F. E. H., Manimaran, M., & Seah, K. H. W. (2006). Garment-based detection of falls and activities of daily living using triaxial MEMS accelerometer. Journal of Physics: Conference Series, 34, 1059.
Hamilton, B. B., Laughlin, J. A., Fiedler, R. C., & Granger, C. V. (1994). Interrater reliability of the 7-level functional independence measure (FIM). Scandinavian Journal of Rehabilitation Medicine, 26(3), 115–119.
Sprint, G., Cook, D. J., Weeks, D. L., & Borisov, V. (2015). Predicting functional independence measure scores during rehabilitation with wearable inertial sensors. IEEE Access, 3, 1350–1366.
Papi, E., Osei-Kuffour, D., Chen, Y. M. A., & McGregor, A. H. (2015). Use of wearable technology for performance assessment: A validation study. Medical Engineering and Physics, 37, 698–704.
Cresswell, K., Shin, Y., & Chen, S. (2017). Quantifying variation in gait features from wearable inertial sensors using mixed effects models. Sensors, 17, 466.
Tamura, T., Sekine, M., Miyoshi, H., Kuwae, Y., & Fujimoto, T. (2013). Wearable inertia sensor application in the rehabilitation field. Advances in Science and Technology, 85, 28–32.
Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. (2011). Summary of the updated American geriatrics society/British geriatrics society clinical practice guideline for prevention of falls in older persons. Journal of the American Geriatrics Society, 59(1), 148–157.
Meijer, G. A. L., Westerterp, K. R., Verhoeven, F. M. H., Koper, H. B. M., & Hoor, F. (1991). Methods to assess physical activity with special reference to motion sensors and accelerometers. IEEE Transactions on Biomedical Engineering, 38, 221–229.
American Geriatrics Society, British Geriatrics Society, and American Academy of Orthopaedic Surgeons Panel on Falls Prevention. (2001). Guidelines for the prevention of falls in older persons. Journal of the American Geriatrics Society, 49, 664–672.
Podsiadlo, D., & Richardson, S. (1991). The timed-up-&-go: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39, 142–148.
Berg, K. O., Maki, B. E., Williams, J. I., Holliday, P. J., & Wood-Dauphinee, S. L. (1992). Clinical and laboratory measures of postural balance in an elderly population. Archives of Physical Medicine and Rehabilitation, 73(11), 1073–1080.
Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., & Horak, F. B. (2010). The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(2), 171–176.
Thrane, G., Joakimsen, R. M., & Thornquist, E. (2007). The association between timed up and go test and history of falls: The tromso study. BMC Geriatrics, 7(1), 1.
Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Physical Therapy, 80(9), 896–903.
Higashi, Y., Yamakoshi, K., Fujimoto, T., Sekine, M., & Tamura, T. (2008). Quantitative evaluation of movement using the timed up-and-go test (Citation).
Greene, B. R., O’Donovan, A., Romero-Ortuno, R., Cogan, L., Scanaill, C. N., & Kenny, R. A. (2010). Quantitative falls risk assessment using the timed up and go test. IEEE Transactions on Biomedical Engineering, 57(12), 2918–2926.
Zakaria, N. A., Kuwae, Y., Tamura, T., Mnato, K., & Kanaya, S. (2015). Quantitative analysis of fall risk using TUG test computer methods. Computer Methods in Biomechanics Biomedical Engineering, 18(4), 426–437.
Salarian, A., Horak, F. B., Zampieri, C., Carlson-Kuhta, P., Nutt, J. G., & Aminian, K. (2010). iTUG, a sensitive and reliable measure of mobility. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(3), 303–310.
Weiss, A., Herman, T., Plotnik, M., Brozgol, M., Giladi, N., & Hausdorff, J. M. (2011). An instrumented timed up and go: The added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiological Measurement, 32, 2003–2018.
Berg, K. O., Wood-Dauphinee, S. L., Williams, J. I., & Gayton, D. (1989). Measuring balance in elderly: Preliminary development of an instrument. Physiotherapy Canada, 41, 304–311.
Auvinet, A., Berrut, G., Touzard, C., Moutel, L., Collet, N., Chaleil, D., & Barrey, E. (2002). Reference data for normal subjects obtained with an accelerometric device. Gait and Posture, 16, 124–134.
Menz, H. B., Lord, S. R., & Fitzpatrick, R. C. (2003). Age-related differences in walking stability. Age and Aging, 32, 137–142.
Zijlstra, W., & Hof, A. L. (2003). Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait and Posture, 18, 1–10.
Cho, C. Y., & Kamen, G. (1998). Detecting balance deficits in frequent fallers using clinical and quantitative evaluation tools. Journal of the American Geriatrics Society, 46, 426–430.
Ganea, R., Paraschiv-Ionescu, A., Büla, C., Rochat, S., & Aminian, K. (2011). Multi-parametric evaluation of sit-to-stand and stand-to-sit transitions in elderly people. Medical Engineering & Physics, 33, 1086–1093.
Shany, T., Redmond, S. J., Narayanan, M. R., & Lovell, N. H. (2012). Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sensors Journal, 12, 658–670.
Shany, T., Redmond, S. J., Marschollek, M., & Lovell, N. H. (2012). Assessing fall risk using wearable sensors: A practical discussion. Journal of Gerontology and Geriatrics, 45, 694–706.
Tao, W., Liu, T., Xheng, R., & Feng, H. (2012). Gait analysis using wearable sensors. Sensors, 12, 2255–2283.
Howcroft, J., Kofman, J., & Lemaire, E. D. (2013). Review of fall risk assessment in geriatric populations using inertial sensors. Journal of NeuroEngineering Rehabilitation, 10, 91.
Sprint, G., Cook, D. J., & Weeks, D. L. (2015). Toward automating clinical assessments: A survey of the timed up and go. IEEE Reviews in Biomedical Engineering, 8, 64–77.
Zarzeczny, R., Nawrat-Szołtysik, A., Polak, A., Maliszewski, J., Kiełtyka, A., Matyja, B., Dudek, M., Zborowska, J., & Wajdman, A. (2017). Aging effect on the instrumented timed-up-and-go test variables in nursing home women aged 80–93 years. Biogerontology, 18(4), 651–663.
Robben, S., Englebienne, G., & Kröse, B. (2017). Delta features from ambient sensor data are good predictors of change in functional health. IEEE Journal of Biomedical and Health Informatics, 21, 986–993.
Godfrey, A. (2017). Wearables for independent living in older adults: Gait and falls. Maturitas, 100, 16–26.
Lindemann, U., Hock, A., Stuber, M., Keck, W., & Becker, C. (2005). Evaluation of a fall detector based on accelerometers: A pilot study. Medical & Biological Engineering & Computing, 43, 548–551.
Bourke, A. K., O’Donovan, K. J., & Ólaighin, G. (2008). The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls. Medical Engineering & Physics, 30(7), 937–946.
Noury, N., Rumeau, P., Bourke, A. K., Ólaighin, G., & Lundy, J. E. (2008). A proposal for the classification and evaluation of fall detectors. IRBM, 29(6), 340–349.
Bourke, A. K., O’Brien, J. V., & Lyons, G. M. (2007). Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture, 26(2), 194–199.
Karantonis, D. M., Narayanan, M. R., Mathie, M., Lovell, N. H., & Celler, B. G. (2006). Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. IEEE Transactions on Information Technology in Biomedicine, 10, 156–167.
Bourke, A. K., & Lyons, G. M. (2008). A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical & Biological Engineering & Computing, 30(1), 84–90.
Dinh, A., Shi, Y., Teng, D., Ralhan, A., Chen, L., Bello-Haas, V. D., Basran, J., Ko, S. B., & McCrowsky, C. (2009). A Fall and near-fall assessment and evaluation system. The Open Biomedical Engineering Journal, 3, 1–7.
Kangas, M., Konttila, A., Lindgren, P., Winblad, I., & Jämsä, T. (2008). Comparison of low-complexity fall detection algorithms for body attached accelerometer. Gait & Posture, 28, 285–291.
Kangas, M., Vikman, I., Wiklander, J., Lindgren, P., Nyberg, L., & Jämsä, T. (2009). Sensitivity and specificity of fall detection in people aged 40 years and over. Gait & Posture, 29(4), 571–574.
Sixsmith, A., & Johnson, N. (2004). A smart sensor to detect the falls of the elderly. IEEE Pervasive Computing, 3(2), 42–47.
Brunnstrom, S. (1970). Movement therapy in hemiplegia: A neurophysiological approach. New York: Harper & Row.
Abaid, N., Cappa, P., Palermo, E., Petrarca, M., & Porfiri, M. (2013). Gait detection in children with and without hemiplegia using single-axis wearable gyroscopes. PLoS One, 8(9), 73152.
Guo, Y., Wu, D., Liu, G., Zhoo, G., Huang, B., & Wang, L. (2012). A low-cost body inertia-sensing network for practical gait discrimination of hemiplegia patients. Telemedicine and e-Health, 18(10), 748–754.
Guo, Y., Zhao, G., Liu, Q., Mei, Z., Ivanov, K., & Wang, L. (2013). Balance and knee extensibility evaluation of hemiplegic gait using an inertia body sensor network. Biomedical Engineering Online, 12, 83.
Patel, S., Hughes, R., Hester, T., Stein, J., Akay, M., Dy, J. G., & Bonato, P. (2010). A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proceedings of the IEEE, 98, 450–461.
Functional ability score. https://www.actionforme.org.uk/uploads/pdfs/functional-ability-scale.pdf
Din, S. D., Patel, S., Cobelli, C., & Bonato, P. (2011). Estimating Fugl-Meyer clinical scores in stroke survivors using wearable sensors. 2011 annual international conference of the Engineering in Medicine and Biology Society (EMBC), Boston, 30 August–3 September 2011, pp. 5839–5842.
Uswatte, G., Foo, W. L., Olmstead, H., Lopez, K., Holand, A., & Simms, L. B. (2005). Ambulatory monitoring of arm movement using accelerometry: An objective measure of upper-extremity rehabilitation in persons with chronic stroke. Archives of Physical Medicine and Rehabilitation, 86, 1498–1501.
Noorkõiv, M., Rodgers, H., & Price, C. I. (2014). Accelerometer measurement of upper extremity movement after stroke: A systematic review of clinical studies. Journal of Neuroengineering and Rehabilitation, 11, 144.
Zhang, Z., Fang, Q., & Gu, X. (2014). Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Systems with Applications, 41, 1973–1980.
Zhang, Z., Liparulo, L., Panella, M., Gu, X., & Fang, Q. (2015). A fuzzy kernel motion classifier for autonomous stroke rehabilitation. IEEE Journal of Biomedical and Health Informatics, 20, 893–901.
Zhang, Z., Fang, Q., & Gu, X. (2016). Objective assessment of upper limb mobility for post-stroke rehabilitation. IEEE Transactions on Biomedical Engineering, 63(4), 859–868.
Yu, L., Xiong, D., Guo, L., & Wang, J. (2016). A compressed sensing-based wearable sensor network for quantitative assessment of stroke patients. Sensors, 16(2), 202.
Maetzler, W., Dormingos, J., Srulijes, K., Ferreira, J. J., & Bloem, B. R. (2013). Quantitative wearable sensors for objective assessment of Parkinson’s disease. Movement Disorders, 28(12), 1628–1637.
Hobert, M. A., Maetzler, W., Aminian, K., & Chiari, L. (2014). Technical and clinical view on amburatory assessment on Parkinson’s disease. Acta Neurologica Scandinavica, 130(3), 139–147.
Zampieri, C., Salarian, A., Carlson-Kuhta, P., Aminian, K., Nutt, J. G., & Horak, F. B. (2010). The instrumented timed up and go test: Potential outcome measure for disease modifying therapies in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 81(2), 171–176.
Manchi, M., King, L., Salarian, A., Holmstrim, L., Mcnames, J., & Horak, F. B. (2012). Mobility lab to assess balance and gait with synchronized body-worn sensors. Journal of Bioengineering and Biomedcal Science, 2012, S1.
Mancini, M., & Horak, F. B. (2016). Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Review of Medical Devices, 13(5), 455–462.
Mariani, B., Jiménez, M. C., Vingerhoets, F. J., & Aminian, K. (2013). On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 60(1), 155–158.
El-Gohary, M., Pearson, S., McNames, J., Mancini, M., Horak, F., Mellone, S., & Chiari, L. (2014). Continuous monitoring of turning in patients with movement disability. Sensors, 14(1), 356–396.
Pham, M. H., Elshehabi, M., Haertner, L., Heger, T., Hobert, M. A., Faber, G. S., Salkovic, D., Ferreira, J. J., Berg, D., Sanchez-Ferro, Á., van Dieën, J. H., & Maetzler, W. (2017). Algorithm for turning detection and analysis validated under home-like conditions in patients with Parkinson’s disease and older adults using a 6 degree-of-freedom inertial measurement unit at the lower back. Frontiers in Neurology, 8, Article 135.
Novak, D., Goršič, M., Podobnik, J., & Munih, M. (2014). Toward real-time automated detection of turns during gait using wearable inertial measurement units. Sensors, 14, 18800–18822.
Salarian, A., Russmann, H., Vingerhoets, F. J. G., Burkhard, P. R., & Aminian, K. (2007). Ambulatory monitoring of physical activities in patients with Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 54(12), 2296–2299.
Ferrari, A., Ginis, P., Hardegger, M., Casamassima, F., Rocchi, L., & Chiari, L. (2016). A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal gait parameters. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(7), 764–773.
Drotár, P., Mekyska, J., Rektorová, I., Masarová, L., Smékal, Z., & Faundez-Zanuy, M. (2015). Decision support framework for Parkinson’s disease based on novel handwriting markers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23, 508–516.
Zeng, W., Liu, F., Wang, Q., Wang, Y., Ma, L., & Yu, Z. (2016). Parkinson’s disease classification using gait analysis via deterministic learning. Neuroscience Letters, 633, 268–278.
Manson, A. J., Brown, P., O’Sullivan, J. D., Asselman, P., Buckwell, D., & Lees, A. J. (2000). An ambulatory dyskinesia monitor. Journal of Neurology, Neurosurgery, and Psychiatry, 68(1), 96–201.
Bhidayasiri, R., Sringean, J., Taechalertpaisarn, P., & Thanawattano, C. (2016). Capturing nighttime symptoms in Parkinson disease: Technical development and experimental verification of inertial sensors for nocturnal hypokinesia. Journal of Rehabilitation Research and Development, 53(4), 487–498.
Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among Parkinson’s disease patients who suffer from freezing of gait: Insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission, 122(3), 403–410.
Bryant, M. S., Rintala, D. H., Hou, J. G., Collins, R. L., & Protas, E. J. (2016). Gait variability in Parkinson's disease: Levodopa and walking direction. Acta Neurologica Scandinavica, 134(1), 83–86.
Mestre, T. A., Sidiropoulos, C., Hamani, C., Poon, Y.-Y., Lozano, A. M., Lang, A. E., & Moro, E. (2016). Long-term double-blinded unilateral pedunculopontine area stimulation in Parkinson’s disease. Movement Disorders, 31(10), 1570–1574.
Rodríguez-Martín, D., Pérez-López, C., Samà, A., Cabestany, J., & Català, A. (2013). A wearable inertial measurement unit for long-term monitoring in the dependency care area. Sensors, 13, 14079–14104.
Sánchez-Ferro, Á., Elshehabi, M., Godinho, C., Salkovic, D., Hobert, M. A., Domingos, J., van Uem, J. M. T., Ferreira, J. J., & Maetzler, W. (2016). New methods for the assessment of Parkinson’s disease (2005 to 2015): A systematic review. Movement Disorders, 31(9), 1283–1292.
Mancini, M., & Horak, F. B. (2016). Potential of APDM mobility lab for the monitoring of the progression of Parkinson’s disease. Expert Review of Medical Devices, 13(5), 455–462.
Tzallas, A., Tsipouras, M., Rigas, G., Tsalikakis, D., Karvounis, E., Chondrogiorgi, M., Psomadellis, F., Cancela, J., Pastorino, M., Waldmeyer, M., Konitsiotis, S., & Fotiadis, D. (2014). PERFORM: A system for monitoring assessment and management of patients with Parkinson’s disease. Sensors, 14, 21329–21357.
Inertial sensors Parkinson’s disease REMPARK infoWearable devices. http://rempark.eu/. Accessed 29 July 2017.
Sant’Anna, A., Salarian, A., & Wickström, N. (2011). A new measure of movement symmetry in early Parkinson’s disease patients using symbolic processing of inertial sensor data. IEEE Transactions on Biomedical Engineering, 58(7), 2127–2135.
Del Din, S., Godfrey, A., Mazzà, C., Lord, S., & Rochester, L. (2016). Free-living monitoring of Parkinson’s disease: Lessons from the field. Movement Disorders, 31(9), 1293–1313.
Lee, W., Evans, A., & Williams, D. R. (2016). Validation of a smartphone application measuring motor function in Parkinson’s disease. Journal of Parkinson’s Disease, 6(2), 371–382.
Tunca, C., Pehlivan, N., Ak, N., Arnrich, B., Salur, G., & Ersoy, C. (2017). Inertial sensor-based robust gait analysis in non-hospital settings for neurological disorders. Sensors, 17, 825.
Ginis, P., Heremans, E., Ferrari, A., Dockx, K., Canning, C. G., & Nieuwboer, A. (2017). Prolonged walking with a wearable system providing intelligent auditory input in people with Parkinson’s disease. Frontiers in Neurology, 8, Article 128, 201.
Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). Association between community ambulation walking patterns and cognitive function in patients with Parkinson’s disease: Further insights into motor-cognitive links. Parkinson’s Disease, 2015, Article 547065.
Suzuki, M., Mitoma, H., & Yoneyama, M. (2017). Quantitative analysis of motor status in Parkinson’s disease using wearable devices: From methodological considerations to problems in clinical applications. Parkinson’s Disease, 2017, Article 6139716.
Espay, A. J., Bonato, P., Nahab, F. B., Maetzler, W., Dean, J. M., Klucken, J., Eskofier, B. M., Merola, A., Horak, F., Lang, A. E., Reilmann, R., Giuffrida, J., Nieuwboer, A., Horne, M., Little, M. A., Litvan, I., Simuni, T., Ray Dorsey, E., Burack, M. A., Kubota, K., Kamondi, A., Godinho, C., Daneault, J.-F., Mitsi, G., Krinke, L., Hausdorff, J. M., Bloem, B. R., & Papapetropoulos, S. (2016). Technology in Parkinson’s disease: Challenges and opportunities. Movement Disorders, 31, 1272–1282.
Wong, T. C., Webster, J. G., Montoye, H. J., & Washburn, R. (1981). Portable accelerometer device for measuring human energy expenditure. IEEE Transactions on Biomedical Engineering, 28(6), 467–471.
Montoye, H. J., Washburn, R., Servais, S., Ertl, A., Webster, J. G., & Nagle, F. J. (1983). Estimation of energy expenditure by a portable accelerometer. Medicine and Science in Sports and Exercise, 15(5), 403–407.
Chen, K. Y., & Sun, M. (1997). Improving energy expenditure estimation by using triaxial accelerometer. Journal of Applied Physiology, 83, 2112–2122.
Chen, K. Y., & Bassett, D. R., Jr. (2005). The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise, 37(11–Suppl), S490–S500.
Bouarfa, L., Atallah, L., Kwasnicki, R. M., Pettitt, C., Frost, G., & Yang, G.-Z. (2014). Predicting free-living energy Expenditure using a miniaturized ear-worn sensor: An evaluation against doubly labeled water. IEEE Transactions on Biomedical Engineering, 61, 566–575.
Altini, M., Penders, J., & Amft, O. (2016). Estimating oxygen uptake during nonsteady-state activities and transitions using wearable sensors. IEEE Journal of Biomedical and Health Informatics, 20, 469–475. ISSN 2168-2194.
Beltrame, T., Amelard, R., Wong, A., & Hughson, R. L. (2017). Prediction of oxygen uptake dynamics by machine learning analysis of wearable sensors during activities of daily living. Scientific Reports, 7, 45738.
Sazonov, E., Hegde, N., Browning, R. C., Melanson, E. L., & Sazonova, N. A. (2015). Posture and activity recognition and energy expenditure estimation in a wearable platform. IEEE Journal of Biomedical and Health Informatics, 19, 1339–1346.
Samy, L., Huang, M.-C., Liu, J. J., Xu, W., & Sarrafzadeh, M. (2014). Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sensors Journal, 14(7), 2092–2101.
Grigg-Damberger, M. M. (2016). The visual scoring of sleep in infants 0 to 2 months of age. Journal of Clinical Sleep Medicine, 12(3), 429–445.
Tal, A., Shinar, Z., Shaki, D., Codish, S., & Goldbart, A. (2017). Validation of contact-free sleep monitoring device with comparison to polysomnography. Journal of Clinical Sleep Medicine, 13(3), 517–522.
Roetenberg, D., Luinge, H., & Slycke, P. (2013). Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Enschede: Xsens technologies.
Brigante, C. M. N., Abbate, N., Basile, A., Faulisi, A. C., & Sessa, S. (2011). Towards miniaturization of a MEMS-based. IEEE Transations on Industrial Electronics, 58(8), 3234–3241.
Zheng, Y., Wong, T. C. H., Leung, B. H. K., & Poon, C. C. Y. (2016). Unobtrusive and multimodal wearable sensing to quantify anxiety. IEEE Sensors Journal, 16, 3689–3696. ISSN 1530-437X.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Tamura, T. (2018). Wearable Units. In: Tamura, T., Chen, W. (eds) Seamless Healthcare Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-69362-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-69362-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69361-3
Online ISBN: 978-3-319-69362-0
eBook Packages: EngineeringEngineering (R0)