Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Face Hallucination and Recognition Using Kernel Canonical Correlation Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10639))

Included in the following conference series:

Abstract

Canonical correlation analysis (CCA) is a classical but powerful tool for image super-resolution tasks. Since CCA in essence is a linear projection learning method, it usually fails to uncover the nonlinear relationships between high-resolution (HR) and low-resolution (LR) facial image features. In order to solve this issue, we propose a new face hallucination and recognition algorithm based on kernel CCA, where the nonlinear correlation between HR and LR face features can be well depicted by implicit high-dimensional nonlinear mappings determined by specific kernels. First, our proposed method respectively extracts the principal component features from high-resolution and low-resolution facial images for computational efficiency and noise removal. Then, it makes use of kernel CCA to learn the nonlinear consistency of HR and LR facial features. The proposed approach is compared with existing face hallucination algorithms. A number of experimental results on LR face recognition have demonstrated the effectiveness and robustness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, S., Kanade, T.: Hallucinating faces. In: 4th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 83–88. IEEE, Grenoble (2000)

    Google Scholar 

  2. Chang, H., Yeung, D.Y., Xiong Y.: Super-resolution through neighbor embedding. In: CVPR, pp. 275–282. IEEE, Washington (2004)

    Google Scholar 

  3. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV, pp. 349–356. IEEE, Kyoto (2009)

    Google Scholar 

  4. Lu, X., Yuan, Y., Yan, P.: Image super-resolution via double sparsity regularized manifold learning. IEEE T-CSVT 23(12), 2022–2033 (2013)

    Google Scholar 

  5. Gao, X., Zhang, K., Tao, D., Li, X.: Image super-resolution with sparse neighbor embedding. IEEE T-IP 21(7), 3194–3205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dong, W., Zhang, L., Lukac, R., Shi, G.: Sparse representation based image interpolation with nonlocal autoregressive modeling. IEEE T-IP 22(4), 1382–1394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE T-IP 19(11), 2889–2900 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. He, L., Qi, H., Zaretzki, R.: Beta process joint dictionary learning for coupled feature spaces with application to single image super-resolution. In: CVPR, pp. 345–352. IEEE, Portland (2013)

    Google Scholar 

  9. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche, T., Mazure, L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  10. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  11. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE T-PAMI 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  12. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  13. Kim, J., Lee, J.K., Lee K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654. IEEE, Las Vegas (2016)

    Google Scholar 

  14. Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., Wang, Z.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883. IEEE, Las Vegas (2016)

    Google Scholar 

  15. Ni, K.S., Nguyen, T.Q.: Image super resolution using support vector regression. IEEE T-IP 16(6), 1596–1610 (2007)

    Article  Google Scholar 

  16. Huang, H., He, H.: Super-resolution method for face recognition using nonlinear mappings on coherent features. IEEE Trans. Neural Netw. 22(1), 121–130 (2011)

    Article  Google Scholar 

  17. Li, Y., Cai, C., Qiu, G., Lam, K.M.: Face hallucination based on sparse local-pixel structure. Pattern Recogn. 47(3), 1261–1270 (2014)

    Article  Google Scholar 

  18. Wang, X., Tang, X.: Hallucinating face by eigentransformation. IEEE Trans. Syst. Man, Cybern. Part C 35(3), 425–434 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61402203. In addition, it is also supported in part by the National Natural Science Foundation of China under Grant Nos. 61472344, 61611540347, the Natural Science Foundation of Jiangsu Province of China under Grant Nos. BK20161338, BK20170513, and sponsored by Excellent Young Backbone Teacher Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Hao Yuan or Yun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, Z., Yuan, YH., Li, Y., Li, B., Qiang, JP. (2017). Face Hallucination and Recognition Using Kernel Canonical Correlation Analysis. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10639. Springer, Cham. https://doi.org/10.1007/978-3-319-70136-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70136-3_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70135-6

  • Online ISBN: 978-3-319-70136-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics