Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Experimental Comparison of Ensemble Classifiers for Evolving Data Streams

  • Conference paper
  • First Online:
Artificial Intelligence XXXIV (SGAI 2017)

Abstract

Today, there is a tremendous growth in the amount of data being generated from various fields (such as smartphones, social networks, emails, customer click streams, different types of sensors and Internet of Things) that show Big Data attributes. Recently efforts have been made towards developing models for knowledge discovery from such data under the research area of stream mining or data stream classification in particular. Ensemble learners have become the popular approach in data stream classification because of their stability-elasticity property, which enables handling data stream challenges such as concept drift, recurrent concepts, novel class detection, and class imbalance. In this paper, we compare ten ensemble classifiers with respect to concept drift and class imbalance using Prequential AUC. In addition, Friedman nonparametric statistical test and Nemenyi post-hoc test were used to identify the best approach among them. This work to some extent can serve as part of a review of existing ensemble classifier algorithms for non-stationary data streams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gama, J., Rodrigues, P.P., Spinosa, E., Carvalho, A.: Knowledge discovery from data streams. In: Web Intelligence and Security – Advances in Data and Text Mining Techniques for Detecting and Preventing Terrorist Activities on the Web, pp. 125–138 (2010)

    Google Scholar 

  2. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

    Article  Google Scholar 

  3. Brzezinski, D., Stefanowski, J.: Prequential AUC: properties of the area under the ROC curve for data streams with concept drift. Knowl. Inf. Syst. 52, 531–562 (2017)

    Article  Google Scholar 

  4. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA massive online analysis. J. Mach. Learn. Res. 11, 1601–1604 (2011)

    Google Scholar 

  5. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inf. Fusion 37, 132–156 (2017)

    Article  Google Scholar 

  6. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2, no. 1, pp. 226–235 (2003)

    Google Scholar 

  7. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011)

    Article  Google Scholar 

  8. Brzezinski, D., Stefanowski, J.: Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(1), 81–94 (2014)

    Article  Google Scholar 

  9. Gonçalves Jr., P.M., de Barros, R.S.M.: RCD: a recurring concept drift framework. Pattern Recognit. Lett. 34(9), 1018–1025 (2013)

    Article  Google Scholar 

  10. Metzen, J.H., Edgington, M., Kassahun, Y., Kirchner, F.: Tracking recurrent concept drift in streaming data using ensemble classifiers. In: Proceedings of the 6th International Conference on Machine Learning and Applications ICMLA 2007, pp. 342–347 (2007)

    Google Scholar 

  11. Kolter, J., Maloof, M.: Dynamic weighted majority: an ensemble method for drifting concepts. J. Mach. Learn. Res. 8, 2755–2790 (2007)

    MATH  Google Scholar 

  12. Brzezinski, D., Stefanowski, J.: Combining block-based and online methods in learning ensembles from concept drifting data streams. Inf. Sci. (Ny) 265, 50–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging bagging for evolving data streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010). 10.1007/978-3-642-15880-3_15

    Chapter  Google Scholar 

  14. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: Proceedings of the 15th ACM SIGKDD International Conference Knowledge Discovery data Mining – KDD 2009, p. 139 (2009)

    Google Scholar 

  15. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining, Philadelphia, PA: Society for Industrial and Applied Mathematics, pp. 443–448 (2007)

    Google Scholar 

  16. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the Sixth ACM SIGKDD International Conference Knowledge Discovery Data Mining, pp. 71–80 (2000)

    Google Scholar 

  17. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: Bazzan, Ana L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 286–295. Springer, Heidelberg (2004). 10.1007/978-3-540-28645-5_29

    Chapter  Google Scholar 

  18. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Idris Tambuwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tambuwal, A.I., Neagu, D., Gheorghe, M. (2017). An Experimental Comparison of Ensemble Classifiers for Evolving Data Streams. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science(), vol 10630. Springer, Cham. https://doi.org/10.1007/978-3-319-71078-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71078-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71077-8

  • Online ISBN: 978-3-319-71078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics